Modeling the Effective Interactions Between Heterogeneously Charged Colloids to Design Responsive Self-assembled Materials

  • Emanuela Bianchi


Heterogeneously charged colloids have recently emerged as promising building blocks for the self-assembly of target structures with specific properties at the nano- and micro-scale level. Owing to the competitive interplay between the orientation-dependent attraction and repulsion—induced by the interactions between like/oppositely charged areas on the particle surface—these colloids can indeed favor the stabilization of specific structures of interest, being at the same time subject to an easy control by means of external parameters, such as the pH and the salt concentration. Here we describe how to derive a reliable and simple coarse-grained description of the effective pair interactions between spherical units with an inhomogeneous surface charge distribution. Such a coarse-grained framework allows to target—using state-of-the-art computational techniques and appropriately developed theoretical approaches—the design, the assembly and the responsiveness of colloids engineered with charged surface regions, thus providing an indispensable tool for rational materials fabrication.



I am indebted to Christos N. Likos and Gerhard Kahl for their valuable contributions to the modeling of heterogeneously charged colloids. I gratefully acknowledge the Alexander von Humboldt Foundation for financial support through a Research Fellowship, and the Austrian Science Fund (FWF) for financial support under Proj. Nos. M1170-N16 (Lise Meitner Fellowship) and V249-N27 (Elise Richter Fellowship).


  1. 1.
    Bianchi E, Kahl G, Likos CN. Inverse patchy colloids: from microscopic description to mesoscopic coarse-graining. Soft Matter. 2011;7:8313.CrossRefGoogle Scholar
  2. 2.
    van Oostrum PDJ, Hejazifar M, Niedermayer C, Reimhult E. Simple method for the synthesis of inverse patchy colloids. J Phys Condens Matter. 2015;27:234105.CrossRefPubMedGoogle Scholar
  3. 3.
    Kalyuzhnyi YV, Vasilyev OA, Cummings PT. Inverse patchy colloids with two and three patches. Analytical and numerical study. J Chem Phys. 2015;143:044904.PubMedGoogle Scholar
  4. 4.
    Yigit C, Heyda J, Dzubiella J. Charged patchy particle models in explicit salt: ion distributions, electrostatic potentials, and effective interactions. J Chem Phys. 2015;143:064904.CrossRefPubMedGoogle Scholar
  5. 5.
    Blanco MA, Shen VK. Effect of the surface charge distribution on the fluid phase behavior of charged colloids and proteins. J Chem Phys. 2016;145:155102.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hieronimus R, Raschke S, Heuer A. How to model the interaction of charged Janus particles. J Chem Phys. 2016;145:064303.CrossRefGoogle Scholar
  7. 7.
    Bharti B, Kogler F, Hall CK, Klapp SHL, Velev OD. Multidirectional colloidal assembly in concurrent electric and magnetic fields. Soft Matter. 2016;12:7747.CrossRefPubMedGoogle Scholar
  8. 8.
    Dempster JM, de la Cruz MO. Aggregation of heterogeneously charged colloids. ACS Nano. 2016;10:5909.CrossRefPubMedGoogle Scholar
  9. 9.
    Pawar A, Kretzschmar I. Fabrication, assembly, and application of patchy particles. Macromol Rapid Commun. 2010;31:150.CrossRefPubMedGoogle Scholar
  10. 10.
    Bianchi E, Blaak R, Likos CN. Patchy colloids: state of the art and perspectives. Phys Chem Chem Phys. 2011;13:6397.CrossRefPubMedGoogle Scholar
  11. 11.
    Wang Y, Wang Y, Breed DR, Manoharan VN, Feng L, Hollingsworth AD, Weck M, Pine DJ. Colloids with valence and specific directional bonding. Nature 2012;491:51.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen Q, Bae SC, Granick S. Directed self-assembly of a colloidal kagome lattice. Nature 2011;469:381.CrossRefPubMedGoogle Scholar
  13. 13.
    Likos CN, Blaak R, Wynveen A. Computer simulations of polyelectrolyte stars and brushes. J Phys Condens Matter. 2008;20:494221.CrossRefGoogle Scholar
  14. 14.
    Božič AL, Podgornik R. Symmetry effects in electrostatic interactions between two arbitrarily charged spherical shells in the Debye-Hückel approximation. J Chem Phys. 2013;138:074902.CrossRefGoogle Scholar
  15. 15.
    Bianchi E, Likos CN, Kahl G. Self-assembly of heterogeneously charged particles under confinement. ACS Nano. 2013;7:4657.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bianchi E, Likos CN, Kahl G. Tunable assembly of heterogeneously charged colloids. Nano Lett. 2014;14:3412.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Noya EG, Kolovos I, Doppelbauer G, Kahl G, Bianchi E. Phase diagram of inverse patchy colloids assembling into an equilibrium laminar phase. Soft Matter 2014;10:8464.CrossRefPubMedGoogle Scholar
  18. 18.
    Noya EG, Bianchi E. Phase behaviour of inverse patchy colloids: effect of the model parameters. J Phys Condens Matter. 2015;27:234103.CrossRefPubMedGoogle Scholar
  19. 19.
    Ferrari S, Bianchi E, Kahl G. Spontaneous assembly of a hybrid crystal-liquid phase in inverse patchy colloid systems. Nanoscale 2017;9:1956.CrossRefPubMedGoogle Scholar
  20. 20.
    Bianchi E, van Oostrum PDJ, Likos CN, Kahl G. Inverse patchy colloids: synthesis, modeling and self-organization. Curr Opin Colloid Interface Sci. 2017;30:8.CrossRefGoogle Scholar
  21. 21.
    Stipsitz M, Bianchi E, Kahl G. Generalized inverse patchy colloid model. J Chem Phys. 2015;142:114905.CrossRefGoogle Scholar
  22. 22.
    Verwey EJW, Overbeek JThG. Theory of the stability of lyophobic colloids. Amsterdam: Elsevier; 1948.Google Scholar
  23. 23.
    Russel WB, Saville DA, Schowalter WR. Colloidal dispersions. Cambridge: Cambridge University Press; 1989.CrossRefGoogle Scholar
  24. 24.
    Abramowitz M, Stegun IA. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. New York: Dover; 1965.Google Scholar
  25. 25.
    Hoffmann N, Likos CN, Hansen J-P. Linear screening of the electrostatic potential around spherical particles with non-spherical charge patterns. Mol Phys. 2004;102:857.CrossRefGoogle Scholar
  26. 26.
    Frenkel D, Smit B. Understanding molecular simulations. San Diego: Academic; 2002.Google Scholar
  27. 27.
    Jackson JD. Classical electrodynamics. 3rd ed. New York: Wiley; 1999.Google Scholar
  28. 28.
    Debye P, Hückel E. The theory of electrolytes. I. Lowering of freezing point and related phenomena. Phys Z. 1923;24:185.Google Scholar
  29. 29.
    El Masri D, van Oostrum PDJ, Smallenburg F, Vissers T, Imhof A, Dijkstra M, van Blaaderen A. Measuring colloidal forces from particle position deviations inside an optical trap. Soft Matter. 2011;7:3462.CrossRefGoogle Scholar
  30. 30.
    Trizac E, Bocquet L, Aubouy M, von Grünberg HH. Alexander’s prescription for colloidal charge renormalization. Langmuir 2003;19:4027.CrossRefGoogle Scholar
  31. 31.
    Guldbrand L, Jönsson B, Wennerström H, Linse P. Electrical double layer forces. A Monte Carlo study. J Phys Condens Matter. 1984;80:2221.Google Scholar
  32. 32.
    dos Santos AP, Diehl A, Levin Y. Colloidal charge renormalization in suspensions containing multivalent electrolyte. J Phys Condens Matter. 2000;132:104105.Google Scholar
  33. 33.
    Barros K, Luijten E. Dielectric effects in the self-assembly of binary colloidal aggregates. Phys Rev Lett. 2014;113:017801.CrossRefPubMedGoogle Scholar
  34. 34.
    Daniel MC, Tsvetkova IB, Quinkert ZT, Murali A, De M, Rotello VM, Kao CC, Dragnea B. Role of surface charge density in nanoparticle-templated assembly of bromovirus protein cages. ACS Nano. 2010;4:3853.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gögelein C, Nägele G, Tuinier R, Gibaud T, Stradner A, Schurtenberger P. A simple patchy colloid model for the phase behavior of lysozyme dispersions. J Chem Phys. 2008;129:085102.CrossRefPubMedGoogle Scholar
  36. 36.
    Božič AL, Šiber A, Podgornik R. How simple can a model of an empty viral capsid be? Charge distributions in viral capsids. J Biol Phys. 2012;38:657.Google Scholar
  37. 37.
    Kurut A, Persson BA, Åkesson T, Forsman J, Lund M. Anisotropic interactions in protein mixtures: Self assembly and phase behavior in aqueous solution. J Phys Chem Lett. 2012;3:731.CrossRefPubMedGoogle Scholar
  38. 38.
    Roosen-Runge F, Zhang F, Schreiber F, Roth R. Ion-activated attractive patches as a mechanism for controlled protein interactions. Sci Rep. 2014;4:7016.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Li W, Persson BA, Morin M, Behrens MA, Lund M, Oskolkova MZ. Charge-induced patchy attractions between proteins. J Phys Chem B. 2015;119:503.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria
  2. 2.Institut für Theoretische PhysikTU WienViennaAustria

Personalised recommendations