Skip to main content

Tyrosine Kinases, microRNAs, Epigenetics: New Insights in the Mechanisms of Leukemogenesis

  • Chapter
  • First Online:
Book cover Recent Trends in Cancer Biology: Spotlight on Signaling Cascades and microRNAs
  • 736 Accesses

Abstract

Haematological malignancies include a broad spectrum of diseases ranging from indolent disorders up to very aggressive leukemias. Recently, numerous studies have contributed to deepen the knowledge of the mechanisms underlying leukemogenesis. Interestingly, different types of leukemias may share the same molecular abnormality (for example, the loss of the TP53 gene). Conversely, only few haematological malignancies harbour a single and specific aberration (for example the BCR/ABL gene fusion in chronic myeloid leukemia). Rather, they represent the final step of a complex transformation process starting from a normal cell that acquires multiple genetic abnormalities because of an intrinsic genetic “frailty” along with stimuli from the cellular microenvironment triggering clonal evolution. Furthermore, either the damage of the genes that are critical in cell growth and death pathways or the disruption of the check-machinery that tunes and supervise the expression of the genome inside the cell (epigenetics), may occur during the clonal evolution. The knowledge of the mechanisms underlying leukemogenesis has addressed the scientific community to test molecules that are able to target specific proteins or genes to verify whether they could replace or integrate the conventional chemotherapy in order to either spare in terms of unneeded toxicity or improve in terms of disease remission and survival. In many cases, the survival improvement and a more acceptable therapy-related toxicity were achieved following the spread of the “target” therapy. This chapter aims to discuss the new insights in the mechanisms of leukemogenesis and their consequences on therapeutic goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Campo E, Swrdlow SH, Harris NL, et al. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117:5019–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Döhner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.

    Article  PubMed  Google Scholar 

  3. Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115:453–74.

    Article  PubMed  Google Scholar 

  4. Solal-Celigny P, Roy P, Colombat P, et al. Follicular lymphoma international prognostic index. Blood. 2004;104:1258–65.

    Article  CAS  PubMed  Google Scholar 

  5. Hoppe RT, Advani RH, Ai WZ, et al. Hodgkin lymphoma version 1.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15:608–38.

    Article  Google Scholar 

  6. O’Donnell MR, Tallman MS, Abboud CN, et al. Acute myeloid leukemia, version 3.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15:926–57.

    Article  Google Scholar 

  7. Wierda WG, Zelenetz AD, Gordon LI, et al. NCCN guidelines insights: chronic lymphocytic leukemia/small lymphocytic leukemia, version 1.2017. J Natl Compr Cancer Netw. 2017;15:293–311.

    Article  Google Scholar 

  8. Byrd JC, Brown JR, O’Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371:213–23.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235–42.

    Article  CAS  PubMed  Google Scholar 

  10. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hughes TP, Kaeda J, Branford S, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349:1423–32.

    Article  CAS  PubMed  Google Scholar 

  12. Landau DA, Carter SL, Stojanov P, et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell. 2013;152:714–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Puente XS, Lopez-Otin C. The evolutionary biography of chronic lymphocytic leukemia. Nat Genet. 2013;45:229–31.

    Article  CAS  PubMed  Google Scholar 

  14. Ciccone M, Ferrajoli A, Keating MJ, et al. Snapshot: chronic lymphocitic leukemia. Cancer Cell. 2014;26:770.

    Article  CAS  PubMed  Google Scholar 

  15. Gaidano G, Foa R, Dalla-Favera R. Molecular pathogenesis of chronic lymphocytic leukemia. J Clin Invest. 2012;122:3432–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ritchie EK, Guerin A, Wolff J, et al. Role of cost-sharing subsidies on the initiation of and adherence to tyrosine kinase inhibitor therapy by Medicare beneficiaries with chronic myeloid leukemia. J Clin Oncol. 2017;35:1744–5.

    Article  PubMed  Google Scholar 

  17. Winn AN, Keating NL, Dusetzina SB. Factors associated with tyrosine kinase inhibitor initiation and adherence among Medicare beneficiaries with chronic myeloid leukemia. J Clin Oncol. 2016;34:4323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hehlmann R, Hochhaus A, Baccarani M, LeukemiaNet E. Chronic myeloid leukaemia. Lancet. 2007;370:342–50.

    Article  CAS  PubMed  Google Scholar 

  19. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243:290–3.

    Article  CAS  PubMed  Google Scholar 

  20. Druker BJ, O’Brien SG, Cortes J, et al. Chronic myelogenous leukemia. Hematology Am Soc Hematol Educ Program. 2002;1:111–35.

    Google Scholar 

  21. Rowley JD. The critical role of chromosome transactions in human leukemias. Annu Rev Genet. 1998;32:495–519.

    Article  CAS  PubMed  Google Scholar 

  22. Greaves MF, Wiemeis J. Origins of chromosome translocations in childhood leukemia. Nat Rev Cancer. 2003;3:639–49.

    Article  CAS  PubMed  Google Scholar 

  23. Soekarman D, van Denderen J, Hoefsloot L, et al. A novel variant of the bcr-abl fusion product in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 1990;4:397–403.

    CAS  PubMed  Google Scholar 

  24. Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446:758–76.

    Article  CAS  PubMed  Google Scholar 

  25. Baccarani M, Cortes J, Pane F, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol. 2009;27:6041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Diehl LF, Karnell LH, Menck HR. The American College of Surgeons Commission on cancer and the American Cancer Society. The National Cancer Data Base report on age, gender, treatment, and outcomes of patients with chronic lymphocytic leukemia. Cancer. 1999;86:2684–92.

    Article  CAS  PubMed  Google Scholar 

  27. Solomon BM, Rabe KG, Slager SL, et al. Overall and cancer-specific survival of patients with breast, colon, kidney, and lung cancers with and without chronic lymphocytic leukemia: a SEER population-based study. J Clin Oncol. 2013;31:930–7.

    Article  PubMed  Google Scholar 

  28. Stilgenbauer S. Prognostic markers and standard management of chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program. 2015;2015:368–77.

    PubMed  Google Scholar 

  29. Byrd JC, Harrington B, O’Brien S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374:323–32.

    Article  CAS  PubMed  Google Scholar 

  30. Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370:997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. O’Brien S, Furman RR, Coutre SE, et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol. 2014;15:48–58.

    Article  PubMed  Google Scholar 

  32. Aoki Y, Isselbacher KJ, Pillai S. Bruton tyrosine kinase is tyrosine phosphorylated and activated in pre-B lymphocytes and receptor-ligated B cells. Proc Natl Acad Sci U S A. 1994;91:10606–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Woyach JA, Johnson AJ, Byrd JC. The B-cell receptor signaling pathway as a thera- peutic target in CLL. Blood. 2012;120:1175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Compagno M, Lim WK, Grunn A, et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature. 2009;459:717–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463:88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lenz G, Davis RE, Ngo VN, et al. (2008) oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008;319:1676–9.

    Article  CAS  PubMed  Google Scholar 

  37. Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. N Engl J Med. 2012;367:826–33.

    Article  CAS  PubMed  Google Scholar 

  38. Chiorazzi N, Ferrarini M. Cellular origin(s) of chronic lymphocytic leukemia: cautionary notes and additional considerations and possibilities. Blood. 2011;117:1781–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ciccone M, Agostinelli C, Rigolin GM, et al. Proliferation centers in chronic lymphocytic leukemia: correlation with cytogenetic and clinicobiological features in consecutive patients analyzed on tissue microarrays. Leukemia. 2012;26:499–508.

    Article  CAS  PubMed  Google Scholar 

  40. Hughes T, Deininger M, Hochhaus A, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108:28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ravandi F, Jorgensen JL, Thomas DA, et al. Detection of MRD may predict the outcome of patients with Philadelphia chromosome-positive ALL treated with tyrosine kinase inhibitors plus chemotherapy. Blood. 2013;122:1214–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jain P, Kantarjian H, Sasaki K, et al. Analysis of 2013 European LeukaemiaNet (ELN) responses in chronic phase CML across four frontline TKI modalities and impact on clinical outcomes. Br J Haematol. 2016;173:114–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. O’Brien SG, Guilhot F, Larson RA, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348:994–1004.

    Article  PubMed  Google Scholar 

  44. Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–7.

    Article  CAS  PubMed  Google Scholar 

  45. Soverini S, Hochhaus A, Nicolini FE, et al. BCR- ABL kinase domain mutation analysis in chronic myeloid leukemia patients trea- ted with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118:1208–15.

    Article  CAS  PubMed  Google Scholar 

  46. Cortes JE, Kim DW, Kantarjian HM, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol. 2012;30:3486–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kantarjian H, Shah NP, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362:2260–70.

    Article  CAS  PubMed  Google Scholar 

  48. Saglio G, Kim DW, Issaragrisil S, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362:2251–9.

    Article  CAS  PubMed  Google Scholar 

  49. Nicolini FE, Ibrahim AR, Soverini S, et al. The BCR-ABLT315I mutation compromises survival in chronic phase chronic myelogenous leukemia patients resistant to tyrosine kinase inhibitors, in a matched pair analysis. Haematologica. 2013;98:1510–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347:472–80.

    Article  CAS  PubMed  Google Scholar 

  51. Baccarani M, Cilloni D, Rondoni M, et al. The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica. 2007;92:1173–9.

    Article  CAS  PubMed  Google Scholar 

  52. Chanan-Khan A, Cramer P, Demirkan F, et al. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol. 2016;17:200–11.

    Article  CAS  PubMed  Google Scholar 

  53. Dimopoulos MA, Trotman J, Tedeschi A, et al. Ibrutinib for patients with rituximab-refractory Waldenström’s macroglobulinaemia (iNNOVATE): an open-label substudy of an international, multicentre, phase 3 trial. Lancet Oncol. 2017;18:241–50.

    Article  CAS  PubMed  Google Scholar 

  54. Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369:507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31:88–94.

    Article  CAS  PubMed  Google Scholar 

  56. O’Brien S, Jones JA, Coutre SE, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17:1409–18.

    Article  PubMed  Google Scholar 

  57. Burger JA, Landau DA, Taylor-Weiner A, et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun. 2016;20(7):11589.

    Article  Google Scholar 

  58. Woyach JA. Patterns of resistance to B cell-receptor pathway antagonists in chronic lymphocytic leukemia and strategies for management. Hematology Am Soc Hematol Educ Program. 2015;2015:355–60.

    PubMed  Google Scholar 

  59. Roccaro AM, Sacco A, Jimenez C, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood. 2014;123:4120–31.

    Article  CAS  PubMed  Google Scholar 

  60. McMullen JR, Boey EJ, Ooi JY, et al. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood. 2014;124:3829–30.

    Article  CAS  PubMed  Google Scholar 

  61. Salles G, Schuster SJ, de Vos S, et al. Efficacy and safety of idelalisib in patients with relapsed, rituximab- and alkylating agent-refractory follicular lymphoma: a subgroup analysis of a phase 2 study. Haematologica. 2017;102:e156–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–96.

    Article  CAS  PubMed  Google Scholar 

  63. Jain P, Kantarjian H, Jabbour E, et al. Ponatinib as first-line treatment for patients with chronic myeloid leukaemia in chronic phase: a phase 2 study. Lancet Haematol. 2015;2:e376–83.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tough DF, Lewis HD, Rioja I, et al. Epigenetic pathway targets for the treatment of disease: accelerating progress in the development of pharmacological tools: IUPHAR review 11. Br J Pharmacol. 2014;171:4981–5010.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Okano M, Bell DW, Haber DA, et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99:247–57.

    Article  CAS  PubMed  Google Scholar 

  66. Pradhan S, Bacolla A, Wells RD, et al. Recombinant human DNA (cytosine-5) methyltransferase. Expression, purification, and comparison of de novo and maintenance methylation. J Biol Chem. 1999;274:33002–10.

    Article  CAS  PubMed  Google Scholar 

  67. Taverna SD, Li H, Ruthenburg AJ, et al. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol. 2007;14:1025–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014;124:30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;447:407–12.

    Article  CAS  PubMed  Google Scholar 

  70. Pasqualucci L, Dominguez-Sola D, Chiarenza A, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011a;471:189–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pasqualucci L, Trifonov V, Fabbri G, et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet. 2011b;43:830–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Miranda TB, Cortez CC, Yoo CB, et al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther. 2009;8:1579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Knutson SK, Wigle TJ, Warholic NM, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol. 2012;8:890–6.

    Article  CAS  PubMed  Google Scholar 

  74. Damaj G, Duhamel A, Robin M, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes: a study by the Société Française de Greffe de Moelle et de Thérapie-Cellulaire and the Groupe-francophone des Myélodysplasies. J Clin Oncol. 2012;30:4533–40.

    Article  CAS  PubMed  Google Scholar 

  75. Tobiasson M, Abdulkadir H, Lennartsson A, et al. Comprehensive mapping of the effects of azacitidine on DNA methylation, repressive/permissive histone marks and gene expression in primary cells from patients with MDS and MDS-related disease. Oncotarget. 2017;8:28812–25.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lund E, Güttinger S, Calado A, et al. Nuclear export of microRNA precursors. Science. 2004;303:95–8.

    Article  CAS  PubMed  Google Scholar 

  78. Fazi F, Racanicchi S, Zardo G, et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell. 2007;12:457–66.

    Article  CAS  PubMed  Google Scholar 

  79. Larsen MT, Häger M, Glenthøj A, et al. miRNA-130a regulates C/EBP-ε expression during granulopoiesis. Blood. 2014;123:1079–89.

    Article  CAS  PubMed  Google Scholar 

  80. Berindan-Neagoe I, Monroig Pdel C, Pasculli B, et al. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin. 2014;64:311–36.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Ferrajoli A, Shanafelt TD, Ivan C, et al. Prognostic value of miR-155 in individuls with monoclonal B-cell lumphocytosis and patients with B chronic lymphocytic leukemia. Blood. 2013;122:1891–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marcucci G, Maharry KS, Metzeler KH, et al. Clinical role of microRNAs in cytogenetically normal acute myeloid leukemia: miR-155 up regulation independently identifies high-risk patients. J Clin Oncol. 2013;31:2086–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Velu CS, Chaubey A, Phelan JD, et al. Therapeutic antagonists of microRNAs deplete leukemia initiating cell activity. J Clin Invest. 2014;124:222–36.

    Article  CAS  PubMed  Google Scholar 

  84. Garzon R, Volinia S, Liu CG, et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 2008;111:3183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Marcucci G, Radmacher MD, Maharry K, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358:1919–28.

    Article  CAS  PubMed  Google Scholar 

  86. Whitman SP, Maharry K, Radmacher MD, et al. FLT3 internal tandem duplication associates with adverse outcome and gene- and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: a cancer and leukemia group B study. Blood. 2010;116:3622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zenz T, Döhner H, Stilgenbauer S. Genetics and risk-stratified approach to therapy in chronic lymphocytic leukemia. Best Pract Res Clin Haematol. 2007;20:439–53.

    Article  CAS  PubMed  Google Scholar 

  88. Zenz T, Mohr J, Eldering E, et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood. 2009;113:3801–8.

    Article  CAS  PubMed  Google Scholar 

  89. Zenz T, Mertens D, Stilgenbauer S. Biological diversity and risk-adapted treatment of chronic lymphocytic leukemia. Haematologica. 2010;95:1441–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Landau DA, Tausch E, Taylor-Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526:525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ciccone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ciccone, M., Calin, G.A. (2018). Tyrosine Kinases, microRNAs, Epigenetics: New Insights in the Mechanisms of Leukemogenesis. In: Fayyaz, S., Farooqi, A. (eds) Recent Trends in Cancer Biology: Spotlight on Signaling Cascades and microRNAs. Springer, Cham. https://doi.org/10.1007/978-3-319-71553-7_2

Download citation

Publish with us

Policies and ethics