Skip to main content

When the Molecules Start Playing Chess, or How MicroRNAs Acquire Dualistic Activity During Cancer Progression

  • Chapter
  • First Online:
Recent Trends in Cancer Biology: Spotlight on Signaling Cascades and microRNAs

Abstract

Genomic instability was found to be a major source of a chromosomal rearrangement resulting in multidimensional gene network reprogramming, providing survival benefits to cancer cells. One recently discovered phenomenon caused by these changes is the dualistic microRNA activity, converting tumor suppressor microRNAs into tumor promoting omcomiRs. Understanding mechanics of this dualism will reveal how far tumor progression could go. This chapter will discuss some aspects of the current knowledge and understanding of this side of oncogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  2. Harfe BD. MicroRNAs in vertebrate development. Curr Opin Genet Dev. 2005;15(4):410–5.

    Article  CAS  PubMed  Google Scholar 

  3. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, et al. p53-Mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007;17(15):1298–307.

    Article  CAS  PubMed  Google Scholar 

  4. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449(7163):682–8.

    Article  CAS  PubMed  Google Scholar 

  5. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kozomara A, Griffiths-Jones S. MiRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(Database issue):D68–73.

    Article  CAS  PubMed  Google Scholar 

  7. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A. 2009;106(9):3207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sachdeva M, Mo YY. MicroRNA-145 suppresses cell invasion and metastasis by directly targeting mucin 1. Cancer Res. 2010;70(1):378–87.

    Article  CAS  PubMed  Google Scholar 

  10. Yin R, Zhang S, Wu Y, Fan X, Jiang F, Zhang Z, et al. microRNA-145 suppresses lung adenocarcinoma-initiating cell proliferation by targeting OCT4. Oncol Rep. 2011;25(6):1747–54.

    CAS  PubMed  Google Scholar 

  11. Todorova K, Mincheff M, Hayrabedyan S, Mincheva J, Zasheva D, Kuzmanov A, Fernández N. Fundamental role of microRNAs in androgen-dependent male reproductive biology and prostate cancerogenesis. Am J Reprod Immunol. 2013;69(2):100–4.

    Article  CAS  PubMed  Google Scholar 

  12. Narayanan R, Jiang J, Gusev Y, Jones A, Kearbey JD, Miller DD, et al. MicroRNAs are mediators of androgen action in prostate and muscle. PLoS One. 2010;5(10):e13637.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sander S, Bullinger L, Klapproth K, Fiedler K, Kestler HA, Barth TFE, et al. MYC stimulates EZH2 expression by repression of its negative regulator miR-26a. Blood. 2008;112(10):4202–12.

    Article  CAS  PubMed  Google Scholar 

  14. Huse JT, Holland EC. Yin and yang: cancer-implicated miRNAs that have it both ways. Cell Cycle. 2009;8(22):3611–2.

    Article  CAS  PubMed  Google Scholar 

  15. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang H-W, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137(6):1005–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang X, Chen Y, Chen L. The versatile role of microRNA-30a in human cancer. Cell Physiol Biochem. 2017;41(4):1616–32.

    Article  CAS  PubMed  Google Scholar 

  17. Chen L, Han L, Zhang K, Shi Z, Zhang J, Zhang A, et al. VHL regulates the effects of miR-23b on glioma survival and invasion via suppression of HIF-1α/VEGF and β-catenin/Tcf-4 signaling. Neuro-Oncology. 2012;14(8):1026–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Majid S, Dar AA, Saini S, Deng G, Chang I, Greene K, et al. MicroRNA-23b functions as a tumor suppressor by regulating Zeb1 in bladder cancer. PLoS One. 2013;8(7):e67686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kong X, Li G, Yuan Y, He Y, Wu X, Zhang W, et al. MicroRNA-7 inhibits epithelial-to-mesenchymal transition and metastasis of breast cancer cells via targeting FAK expression. PLoS One. 2012;7(8):e41523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li T, Pan H, Li R. The dual regulatory role of miR-204 in cancer. Tumor Biol. 2016;37(9):11667–77.

    Article  CAS  Google Scholar 

  21. Todorova K, Metodiev MV, Metodieva G, Zasheva D, Mincheff M, Hayrabedyan S. miR-204 is dysregulated in metastatic prostate cancer in vitro. Mol Carcinog. 2016;55(2):131–47.

    Article  CAS  PubMed  Google Scholar 

  22. Lee H, Lee S, Bae H, Kang H-S, Kim SJ. Genome-wide identification of target genes for miR-204 and miR-211 identifies their proliferation stimulatory role in breast cancer cells. Sci Rep. 2016;6:25287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang X, Qiu W, Zhang G, Xu S, Gao Q, Yang Z. MicroRNA-204 targets JAK2 in breast cancer and induces cell apoptosis through the STAT3/BCl-2/survivin pathway. Int J Clin Exp Pathol. 2015;8(5):5017–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Costa-Pinheiro P, Ramalho-Carvalho J, Vieira FQ, Torres-Ferreira J, Oliveira J, Gonçalves CS, et al. MicroRNA-375 plays a dual role in prostate carcinogenesis. Clin Epigenetics. 2015;7(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li H, Bian C, Liao L, Li J, Zhao RC. miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat. 2011;126(3):565–75.

    Article  CAS  PubMed  Google Scholar 

  26. Gebeshuber CA, Zatloukal K, Martinez J. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 2009;10(4):400–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mertens-Talcott SU, Chintharlapalli S, Li X, Safe S. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res. 2007;67(22):11001–11.

    Article  CAS  PubMed  Google Scholar 

  28. Guttilla IK, White BA. Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem. 2009;284(35):23204–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mooi WJ, Peeper DS. Oncogene-induced cell senescence – halting on the road to cancer. N Engl J Med. 2006;355(10):1037–46.

    Article  CAS  PubMed  Google Scholar 

  30. Todorova K, Metodiev MV, Metodieva G, Mincheff M, Fernández N, Hayrabedyan S. Micro-RNA-204 participates in TMPRSS2/ERG regulation and androgen receptor reprogramming in prostate cancer. Horm Cancer. 2017;8(1):28–48.

    Article  CAS  PubMed  Google Scholar 

  31. Li WF, Dai H, Ou Q, Zuo GQ, Liu CA. Overexpression of microRNA-30a-5p inhibits liver cancer cell proliferation and induces apoptosis by targeting MTDH/PTEN/AKT pathway. Tumor Biol. 2016;37(5):5885–95.

    Article  CAS  Google Scholar 

  32. Chang T-C, Yu D, Lee Y-S, Wentzel EA, Arking DE, West KM, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2008;40(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  33. Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells. 2010;28(2):357–64.

    PubMed  PubMed Central  Google Scholar 

  34. Liu Z, Chen L, Zhang X, Xu X, Xing H, Zhang Y, et al. RUNX3 regulates vimentin expression via miR-30a during epithelial-mesenchymal transition in gastric cancer cells. J Cell Mol Med. 2014;18(4):610–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang P, Yang X, Ma X, Ingram DR, Lazar AJ, Torres KE, Pollock RE. Antitumor effects of pharmacological EZH2 inhibition on malignant peripheral nerve sheath tumor through the miR-30a and KPNB1 pathway. Mol Cancer. 2015;14:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ge Y, Yan X, Jin Y, Yang X, Yu X, Zhou L, et al. fMiRNA-192 and miRNA-204 directly suppress lncRNA HOTTIP and interrupt GLS1-mediated glutaminolysis in hepatocellular carcinoma. PLoS Genet. 2015;11(12):e1005726.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ying Z, Li Y, Wu J, Zhu X, Yang Y, Tian H, et al. Loss of miR-204 expression enhances glioma migration and stem cell like phenotype. Cancer Res. 2012.; Retrieved from http://cancerres.aacrjournals.org/content/early/2012/12/01/0008-5472.CAN-12-2895.abstract

  38. Lu N, Lin T, Wang L, Qi M, Liu Z, Dong H, et al. Association of SOX4 regulated by tumor suppressor miR-30a with poor prognosis in low-grade chondrosarcoma. Tumour Biol. 2015;36(5):3843–52.

    Article  CAS  PubMed  Google Scholar 

  39. Todorova K, Zasheva D, Kanev K, Hayrabedyan S. miR-204 shifts the epithelial to mesenchymal transition in concert with the transcription factors RUNX2, ETS1, and cMYB in prostate cancer cell line model. J Cancer Res. 2014;2014(840906):1–14.

    Article  Google Scholar 

  40. Liu Z, Tu K, Liu Q. Effects of microRNA-30a on migration, invasion and prognosis of hepatocellular carcinoma. FEBS Lett. 2014;588(17):3089–97.

    Article  CAS  PubMed  Google Scholar 

  41. He H, Chen K, Wang F, Zhao L, Wan X, Wang L, Mo Z. miR-204-5p promotes the adipogenic differentiation of human adipose-derived mesenchymal stem cells by modulating DVL3 expression and suppressing Wnt/β-catenin signaling. Int J Mol Med. 2015;35(6):1587–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao J-J, Lin J, Zhu D, Wang X, Brooks D, Chen M, et al. miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/β-catenin/BCL9 pathway. Cancer Res. 2014;74(6):1801–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu X, Zeng Y, Wu S, Zhong J, Wang Y, Xu J. MiR-204, down-regulated in retinoblastoma, regulates proliferation and invasion of human retinoblastoma cells by targeting CyclinD2 and MMP-9. FEBS Lett. 2015;589(5):645–50.

    Article  CAS  PubMed  Google Scholar 

  44. Zheng B, Zhu H, Gu D, Pan X, Qian L, Xue B, et al. MiRNA-30a-mediated autophagy inhibition sensitizes renal cell carcinoma cells to sorafenib. Biochem Biophys Res Commun. 2015;459(2):234–9.

    Article  CAS  PubMed  Google Scholar 

  45. Yu Y, Cao L, Yang L, Kang R, Lotze M, Tang D. microRNA 30A promotes autophagy in response to cancer therapy. Autophagy. 2012;8(5):853–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mikhaylova O, Stratton Y, Hall D, Kellner E, Ehmer B, Drew AF, et al. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell. 2012;21(4):532–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shi X-B, Xue L, Yang J, Ma A-H, Zhao J, Xu M, et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A. 2007;104(50):19983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kai ZS, Pasquinelli AE. MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol. 2010;17(1):5–10.

    Article  CAS  PubMed  Google Scholar 

  49. Ding M, Lin B, Li T, Liu Y, Li Y, Zhou X, et al. A dual yet opposite growth-regulating function of miR-204 and its target XRN1 in prostate adenocarcinoma cells and neuroendocrine-like prostate cancer cells. Oncotarget. 2015;6(10):7686–700.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kumar B, Khaleghzadegan S, Mears B, Hatano K, Kudrolli TA, Chowdhury WH, et al. Identification of miR-30b-3p and miR-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget. 2016;7(45):72593–607.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I, Brosh R, et al. TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One. 2011;6(7):e21650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yu J, Yu J, Mani R-S, Cao Q, Brenner CJ, Cao X, et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010;17(5):443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, et al. Role of the TMPRSS2–ERG gene fusion in prostate cancer. Neoplasia. 2008;10(2):177–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang J, Cai Y, Ren C, Ittmann M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 2006;66(17):8347–51.

    Article  CAS  PubMed  Google Scholar 

  55. Alumkal JJ, Herman JG. Distinct epigenetic mechanisms distinguishTMPRSS2-ERG fusion-positive and -negative prostate cancers. Cancer Discov. 2012;2(11):979–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Narod SA, Seth A, Nam R. Fusion in the ETS gene family and prostate cancer. Br J Cancer. 2008;99(6):847–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yin L, Rao P, Elson P, Wang J, Ittmann M, Heston WDW. Role of TMPRSS2-ERG gene fusion in negative regulation of PSMA expression. PLoS One. 2011;6(6):e21319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barwick BG, Abramovitz M, Kodani M, Moreno CS, Nam R, Tang W, et al. Prostate cancer genes associated with TMPRSS2-ERG gene fusion and prognostic of biochemical recurrence in multiple cohorts. Br J Cancer. 2010;102(3):570–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hu Y, Dobi A, Sreenath T, Cook C, Tadase AY, Ravindranath L, et al. Delineation of TMPRSS2-ERG splice variants in prostate cancer. Clin Cancer Res. 2008;14(15):4719–25.

    Article  CAS  PubMed  Google Scholar 

  60. Attard G, Clark J, Ambroisine L, Fisher G, Kovacs G, Flohr P, et al. Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene. 2008;27(3):253–63.

    Article  CAS  PubMed  Google Scholar 

  61. Burdova A, Bouchal J, Tavandzis S, Kolar Z. TMPRSS2-erg gene fusion in prostate cancer. Biomed Papers. 2014;158(4):502–10.

    Google Scholar 

  62. Bastus NC, Boyd LK, Mao X, Stankiewicz E, Kudahetti SC, Oliver RTD, et al. Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res. 2010;70(23):9544–8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fayyaz S, Farooqi AA. miRNA and TMPRSS2-ERG do not mind their own business in prostate cancer cells. Immunogenetics. 2013;65(5):315–32.

    Article  CAS  PubMed  Google Scholar 

  64. Sharma S, Lichtenstein A. Aberrant splicing of the E-cadherin transcript is a novel mechanism of gene silencing in chronic lymphocytic leukemia cells. Blood. 2009;114(19):4179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang Z, Hurley PJ, Simons BW, Marchionni L, Berman DM, Ross AE, Schaeffer EM. Sox9 is required for prostate development and prostate cancer initiation. Oncotarget. 2012;3(6):651–63.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Akech J, Wixted JJ, Bedard K, van der Deen M, Hussain S, Guise TA, et al. Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene. 2010;29(6):811–21.

    Article  CAS  PubMed  Google Scholar 

  67. Lambertini E, Franceschetti T, Torreggiani E, Penolazzi L, Pastore A, Pelucchi S, et al. SLUG: a new target of lymphoid enhancer factor-1 in human osteoblasts. BMC Mol Biol. 2010;11:13.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Little GH, Baniwal SK, Adisetiyo H, Groshen S, Chimge N-O, Kim SY, et al. Differential effects of RUNX2 on the androgen receptor in prostate cancer: synergistic stimulation of a gene set exemplified by SNAI2 and subsequent invasiveness. Cancer Res. 2014;74(10):2857–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Farooqi AA, Hou M-F, Chen C-C, Wang C-L, Chang H-W. Androgen receptor and gene network: micromechanics reassemble the signaling machinery of TMPRSS2-ERG positive prostate cancer cells. Cancer Cell Int. 2014;14:34.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lin X, Qureshi MZ, Romero MA, Yaylim I, Arif S, Ucak I, et al. Signaling networks in TMPRSS2-ERG positive prostate cancers: do we need a Pied Piper or sharpshooter to deal with “at large” fused oncoprotein. Cell Mol Biol (Noisy-le-Grand). 2017;63(2):1–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/28364793

    Article  CAS  Google Scholar 

  71. Kadam S, McAlpine GS, Phelan ML, Kingston RE, Jones KA, Emerson BM. Functional selectivity of recombinant mammalian SWI/SNF subunits. Genes Dev. 2000;14(19):2441–51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11018012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sanmiguel P. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot. 1998;82:37–44.

    Article  CAS  Google Scholar 

  73. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.

    Article  CAS  PubMed  Google Scholar 

  74. Guo H, Chitiprolu M, Gagnon D, Meng L, Perez-Iratxeta C, Lagace D, Gibbings D. Autophagy supports genomic stability by degrading retrotransposon RNA. Nat Commun. 2014;5:1–11.

    CAS  Google Scholar 

  75. Hayrabedyan S, Mincheff M, Zasheva D, Manolova N, Todorova K. Autophagy signalling is differentially modulated by miR-204 in context of innate immunity induction. Comptes Rendus de L’Academie Bulgare des Sciences. 2013;66(1):127–32.

    CAS  Google Scholar 

  76. Gibbings D, Mostowy S, Jay F, Schwab Y, Cossart P, Voinnet O. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat Cell Biol. 2012;14(12):1314–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sibony M, Abdullah M, Greenfield L, Raju D, Wu T, Rodrigues DM, et al. Microbial disruption of autophagy alters expression of the RISC component AGO2, a critical regulator of the miRNA silencing pathway. Inflamm Bowel Dis. 2015;21(12):2778–86.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gozuacik D, Akkoc Y, Ozturk DG, Kocak M. Autophagy-regulating microRNAs and cancer. Front Oncol. 2017;7:65.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lu C, Luo J. Decoding the androgen receptor splice variants. Transl Androl Urol. 2013;2(3):178–86.

    PubMed  PubMed Central  Google Scholar 

  80. Cao B, Qi Y, Zhang G, Xu D, Zhan Y, Alvarez X, et al. Androgen receptor splice variants activating the full-length receptor in mediating resistance to androgen-directed therapy. Oncotarget. 2014;5(6):1646–56.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Nadiminty N, Tummala R, Liu C, Lou W, Evans CP, Gao AC. NF-κB2/p52:c-Myc:hnRNPA1 pathway regulates expression of androgen receptor splice variants and enzalutamide sensitivity in prostate cancer. Mol Cancer Ther. 2015;14(8):1884–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Todorova K, Zasheva D, Hayrabedyan S. Innate immunity challenge differently modulates inflammatory and apoptosis regulation in lymph node and bone marrow metastatic cell line models, favouring higher metastatic phenotype. Comptes Rendus de L’Academie Bulgare des Sciences. 2014;67(11):1575–82.

    CAS  Google Scholar 

  83. Munkley J, Livermore K, Rajan P, Elliott DJ. RNA splicing and splicing regulator changes in prostate cancer pathology. Hum Genet. 2017. https://doi.org/10.1007/s00439-017-1792-9.

  84. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The transcriptional landscape of the mammalian genome. Science (New York, NY). 2005;309(5740):1559–63.

    Article  CAS  Google Scholar 

  85. Kapranov P, Willingham AT, Gingeras TR. Genome-wide transcription and the implications for genomic organization. Nat Rev Genet. 2007;8(6):413–23.

    Article  CAS  PubMed  Google Scholar 

  86. ENCODE Project Consortium, Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816.

    Article  Google Scholar 

  87. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011;25(18):1915–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yunusov D, Anderson L, DaSilva LF, Wysocka J, Ezashi T, Roberts RM, Verjovski-Almeida S. HIPSTR and thousands of lncRNAs are heterogeneously expressed in human embryos, primordial germ cells and stable cell lines. Sci Rep. 2016;6:32753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Bulgarian National Research Fund (Grant # DCOST 01/23, 2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soren Hayrabedyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Todorova, K., Hayrabedyan, S. (2018). When the Molecules Start Playing Chess, or How MicroRNAs Acquire Dualistic Activity During Cancer Progression. In: Fayyaz, S., Farooqi, A. (eds) Recent Trends in Cancer Biology: Spotlight on Signaling Cascades and microRNAs. Springer, Cham. https://doi.org/10.1007/978-3-319-71553-7_14

Download citation

Publish with us

Policies and ethics