Skip to main content
  • 725 Accesses

Abstract

Acute myeloid leukemia (AML) is the most frequent leukemia in adults and presents a very high incidence all over the world. The most important aberrations involve mutations and large chromosomal translocations in the genes responsible for hematopoiesis, resulting in an abnormal signal transduction activation that boosts survival and proliferation of progenitor cells and a typical accumulation of poorly differentiated myeloid cells. Acute myeloid leukemia is an extremely complex malignancy with considerable genetic, epigenetic, and phenotypic heterogeneity. Most AML genomes present very few mutations, which are responsible for the aberrant phenotypes observed. The possibility to characterize the mutations present in single cells and the studies on hematopoiesis performed both in vitro and in vivo, make AML an ideal model for investigating the underlying mechanisms of tumorigenesis. In the last years, the signaling proteins identified as specifically mutated in AML have raised huge consideration as attractive therapeutic targets and many efforts are currently ongoing in order to design ad hoc strategies to improve prognosis and therapy. Recent advances in the conventional treatments, together with innovative therapies, show significant promises for curing AML patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALCL:

Anaplastic large cell lymphomas

AML:

Acute myeloid leukemia

APL:

Acute promyelocitic leukemia

ATRA:

All-trans retinoic acid

CART:

Chimeric antigen receptor T-cell

CBF:

Core binding factor

CK:

Complex karyotype

CN:

Cytogenetically normal

CR:

Complete remission

DNMT:

DNA methyltransferases

FAB:

French American British

GO:

Gemtuzumab ozogamicin

HDAC:

Histone deacetylase

HMA:

Hypomethylating agent

ITD:

Internal tandem duplication

MEF:

Mouse embryonic fibroblast

NCCN:

National comprehensive cancer network clinical guidelines in oncology

OS:

Overall survival

PTD:

Partial tandem duplication

RTK:

Receptor tyrosine kinase

scFv:

Single chain variable fragment

TKD:

Tyrosine kinase domain

WHO:

World health organization

References

  1. Gojo I, Karp JE. New strategies in acute myelogenous leukemia: leukemogenesis and personalized medicine. Clin Cancer Res. 2014;20:6233–41. https://doi.org/10.1158/1078-0432.CCR-14-0900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Estey EH. Acute myeloid leukemia: 2014 update on risk-stratification and management. Am J Hematol. 2014;89:1063–81. https://doi.org/10.1002/ajh.23834.

    Article  CAS  PubMed  Google Scholar 

  3. Perry AM, Attar EC. New insights in AML biology from genomic analysis. Semin Hematol. 2014;51:282–97. https://doi.org/10.1053/j.seminhematol.2014.08.005.

    Article  CAS  PubMed  Google Scholar 

  4. Sill H, Olipitz W, Zebisch A, Schulz E, Wölfler A. Therapy-related myeloid neoplasms: pathobiology and clinical characteristics. Br J Pharmacol. 2011;162:792–805. https://doi.org/10.1111/j.1476-5381.2010.01100.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vardiman JW, Thiele J, Arber DA. The 2008 revision of the WHO classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2008;114:937–52. https://doi.org/10.1182/blood-2009-03-209262.

    Article  CAS  Google Scholar 

  6. Arber DA, Orazi A, Hasserjian R, Borowitz MJ, Beau MM, Le Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–406. https://doi.org/10.1182/blood-2016-03-643544.The.

    Article  CAS  PubMed  Google Scholar 

  7. Patel JP, Gönen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, Van Vlierberghe P, Dolgalev I, Thomas S, Aminova O, Huberman K, Cheng J, Viale A, Socci ND, Heguy A, Cherry A, Vance G, Higgins RR, Ketterling RP, Gallagher RE, Litzow M, van den Brink MRM, Lazarus HM, Rowe JM, Luger S, Ferrando A, Paietta E, Tallman MS, Melnick A, Abdel-Wahab O, Levine RL. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366:1079–89. https://doi.org/10.1056/NEJMoa1112304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Voigt P, Reinberg D. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia The Cancer Genome Atlas Research Network. N Engl J Med. 2013;368:2059–74. https://doi.org/10.1056/NEJMoa1301689.

    Article  CAS  Google Scholar 

  9. Takahashi S. Current findings for recurring mutations in acute myeloid leukemia. J Hematol Oncol. 2011;4:36. https://doi.org/10.1186/1756-8722-4-36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kihara R, Nagata Y, Kiyoi H, Kato T, Yamamoto E, et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia. 2014;28:1586–95.

    Article  CAS  PubMed  Google Scholar 

  11. Ghoshal S, Baumann H, Wetzler M. Epigenetic regulation of signal transducer and activator of transcription 3 in acute myeloid leukemia. Leuk Res. 2008;32:1005–14. https://doi.org/10.1016/j.leukres.2007.11.035.

    Article  CAS  Google Scholar 

  12. Yamada O, Kawauchi K. The role of the JAK-STAT pathway and related signal cascades in telomerase activation during the development of hematologic malignancies. JAK-STAT. 2013;2:e25256. https://doi.org/10.4161/jkst.25256.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schuringa JJ, Wierenga AT, Kruijer W, Vellenga E. Constitutive Stat3, Tyr705, and Ser727 phosphorylation in acute myeloid leukemia cells caused by the autocrine secretion of interleukin-6. Blood. 2000;95:3765–70.

    CAS  PubMed  Google Scholar 

  14. Spiekermann K, Bagrintseva K, Schwab R, Schmieja K, Hiddemann W. Overexpression and constitutive activation of FLT3 induces STAT5 activation in primary acute myeloid leukemia blast cells. Clin Cancer Res. 2003;9:2140–50.

    CAS  PubMed  Google Scholar 

  15. Steensma DP, McClure RF, Karp JE, Tefferi A, Lasho TL, Powell HL, DeWald GW, Kaufmann SH. JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia. 2006;20:971–8.

    Article  CAS  PubMed  Google Scholar 

  16. Cook AM, Li L, Ho Y, Lin A, Li L, Stein A, Forman S, Perrotti D, Jove R, Bhatia R. Role of altered growth factor receptor-mediated JAK2 signaling in growth and maintenance of human acute myeloid leukemia stem cells. Blood. 2014;123:2826–37. https://doi.org/10.1182/blood-2013-05-505735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Lowenberg B, Bloomfield CD. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115:453–74. https://doi.org/10.1182/blood-2009-07-235358.

    Article  PubMed  CAS  Google Scholar 

  18. Shah A, Andersson TM-L, Rachet B, Bjorkholm M, Lambert PC. Survival and cure of acute myeloid leukaemia in England, 1971–2006: a population-based study. Br J Haematol. 2013;162:509–16. https://doi.org/10.1111/bjh.12425.

    Article  PubMed  Google Scholar 

  19. Kantarjian H, O’brien S, Cortes J, Giles F, Faderl S, Jabbour E, Garcia-Manero G, Wierda W, Pierce S, Shan J, Estey E. Results of intensive chemotherapy in 998 patients age 65 years or older with acute myeloid leukemia or high-risk myelodysplastic syndrome: predictive prognostic models for outcome. Cancer. 2006;106:1090–8. https://doi.org/10.1002/cncr.21723.

    Article  PubMed  Google Scholar 

  20. Walter RB, Othus M, Borthakur G, Ravandi F, Cortes JE, Pierce SA, Appelbaum FR, Kantarjian HA, Estey EH. Prediction of early death after induction therapy for newly diagnosed acute myeloid leukemia with pretreatment risk scores: a novel paradigm for treatment assignment. J Clin Oncol. 2011;29:4417–23. https://doi.org/10.1200/JCO.2011.35.7525.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hulegardh E, Nilsson C, Lazarevic V, Garelius H, Antunovic P, Rangert Derolf A, Mollgard L, Uggla B, Wennstrom L, Wahlin A, Hoglund M, Juliusson G, Stockelberg D, Lehmann S. Characterization and prognostic features of secondary acute myeloid leukemia in a population-based setting: a report from the Swedish Acute Leukemia Registry. Am J Hematol. 2015;90:208–14. https://doi.org/10.1002/ajh.23908.

    Article  PubMed  Google Scholar 

  22. Mroźek K, Marcucci G, Nicolet D, Maharry KS, Becker H, Whitman SP, Metzeler KH, Schwind S, YZ W, Kohlschmidt J, Pettenati MJ, Heerema NA, Block AW, Patil SR, Baer MR, Kolitz JE, Moore JO, Carroll AJ, Stone RM, Larson RA, Bloomfield CD. Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. J Clin Oncol. 2012;30:4515–23. https://doi.org/10.1200/JCO.2012.43.4738.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Qin Y-Z, Zhu H-H, Jiang Q, Jiang H, Zhang L-P, L-P X, Wang Y, Liu Y-R, Lai Y-Y, Shi H-X, Jiang B, Huang X-J. Prevalence and prognostic significance of c-KIT mutations in core binding factor acute myeloid leukemia: a comprehensive large-scale study from a single Chinese center. Leuk Res. 2014;38:1435–40. https://doi.org/10.1016/j.leukres.2014.09.017.

    Article  CAS  PubMed  Google Scholar 

  24. Dohner K, Schlenk RF, Habdank M, Scholl C, Rucker FG, Corbacioglu A, Bullinger L, Frohling S, Dohner H. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood. 2005;106:3740–6. https://doi.org/10.1182/blood-2005-05-2164.

    Article  PubMed  CAS  Google Scholar 

  25. Cagnetta A, Adamia S, Acharya C, Patrone F, Miglino M, Nencioni A, Gobbi M, Cea M. Role of genotype-based approach in the clinical management of adult acute myeloid leukemia with normal cytogenetics. Leuk Res. 2014;38:649–59. https://doi.org/10.1016/j.leukres.2014.03.006.

    Article  CAS  PubMed  Google Scholar 

  26. Port M, Bottcher M, Thol F, Ganser A, Schlenk R, Wasem J, Neumann A, Pouryamout L. Prognostic significance of FLT3 internal tandem duplication, nucleophosmin 1, and CEBPA gene mutations for acute myeloid leukemia patients with normal karyotype and younger than 60 years: a systematic review and meta-analysis. Ann Hematol. 2014;93:1279–86. https://doi.org/10.1007/s00277-014-2072-6.

    Article  CAS  PubMed  Google Scholar 

  27. Grossmann V, Schnittger S, Kohlmann A, Eder C, Roller A, Dicker F, Schmid C, Wendtner C-M, Staib P, Serve H, Kreuzer K-A, Kern W, Haferlach T, Haferlach C. A novel hierarchical prognostic model of AML solely based on molecular mutations. Blood. 2012;120:2963–72. https://doi.org/10.1182/blood-2012-03-419622.

    Article  CAS  PubMed  Google Scholar 

  28. Shivarov V, Gueorguieva R, Stoimenov A, Tiu R. DNMT3A mutation is a poor prognosis biomarker in AML: results of a meta-analysis of 4500 AML patients. Leuk Res. 2013;37:1445–50. https://doi.org/10.1016/j.leukres.2013.07.032.

    Article  CAS  PubMed  Google Scholar 

  29. Chen X, Xie H, Wood BL, Walter RB, Pagel JM, Becker PS, Sandhu VK, Abkowitz JL, Appelbaum FR, Estey EH. Relation of clinical response and minimal residual disease and their prognostic impact on outcome in acute myeloid leukemia. J Clin Oncol. 2015;33:1258–64. https://doi.org/10.1200/JCO.2014.58.3518.

    Article  PubMed  Google Scholar 

  30. Walter RB, Kantarjian HM, Huang X, Pierce SA, Sun Z, Gundacker HM, Ravandi F, Faderl SH, Tallman MS, Appelbaum FR, Estey EH. Effect of complete remission and responses less than complete remission on survival in acute myeloid leukemia: a combined Eastern Cooperative Oncology Group, Southwest Oncology Group, and M. D. Anderson Cancer Center Study. J Clin Oncol. 2010;28:1766–71. https://doi.org/10.1200/JCO.2009.25.1066.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hoyos M, Nomdedeu JF, Esteve J, Duarte R, Ribera JM, Llorente A, Escoda L, Bueno J, Tormo M, Gallardo D, de Llano MPQ, Marti JM, Aventin A, Mangues R, Brunet S, Sierra J. Core binding factor acute myeloid leukemia: the impact of age, leukocyte count, molecular findings, and minimal residual disease. Eur J Haematol. 2013;91:209–18. https://doi.org/10.1111/ejh.12130.

    Article  CAS  PubMed  Google Scholar 

  32. Yin JAL, O’Brien MA, Hills RK, Daly SB, Wheatley K, Burnett AK. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood. 2012;120:2826–35. https://doi.org/10.1182/blood-2012-06-435669.

    Article  CAS  PubMed  Google Scholar 

  33. Grimwade D, Ivey A, BJP H. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2015;127:29–42. https://doi.org/10.1182/blood-2015-07-604496.have.

    Article  PubMed  CAS  Google Scholar 

  34. Grimwade D, Mrozek K. Diagnostic and prognostic value of cytogenetics in acute myeloid leukemia. Hematol Oncol Clin North Am. 2011;25:1135–1161., vii. https://doi.org/10.1016/j.hoc.2011.09.018.

    Article  PubMed  Google Scholar 

  35. Schanz J. Helpful tool or oversimplification? Concept of the monosomal karyotype from the clinical and cytogenetic point of view. Biol Blood Marrow Transplant. 2017;22:191–2. https://doi.org/10.1016/j.bbmt.2015.11.013.

    Article  Google Scholar 

  36. Coombs CC, Tallman MS, Levine RL. Molecular therapy for acute myeloid leukaemia. Nat Rev Clin Oncol. 2016;13:305–18.

    Article  CAS  PubMed  Google Scholar 

  37. O’Donnell MR, Tallman MS, Abboud CN, et al. National Comprehensive Cancer Network clinical guidelines in oncology (NCCN guidelines). Acute myeloid leukemia 1. Fort Washington, MD: National Comprehensive Cancer Network; 2015.

    Google Scholar 

  38. Parcells BW, Ikeda AK, Simms-Waldrip T, Moore TB, Sakamoto KM. FMS-like tyrosine kinase 3 in normal hematopoiesis and acute myeloid leukemia. Stem Cells. 2006;24:1174–84. https://doi.org/10.1634/stemcells.2005-0519.

    Article  CAS  PubMed  Google Scholar 

  39. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett AK, Goldstone AH, Linch DC. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic patients from the United Kingdom Medical Research Council AML 10 and 12 .pdf. Blood. 2015;98:1752–60.

    Article  Google Scholar 

  40. Whitman SP, Archer KJ, Feng L, Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD, Carroll AJ, Mro K, Vardiman JW, George SL, Kolitz JE, Larson R, Bloomfield CD, Caligiuri M. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3 : a cancer and leukemia group B study absence of the wild-type allele predicts poor progno. Cancer Res. 2001;61(19):7233–9.

    CAS  PubMed  Google Scholar 

  41. Schlenk RF, Döhner K, Krauter J, Fröhling S, Corbacioglu A, Bullinger L, Habdank M, Späth D, Morgan M, Benner A, Schlegelberger B, Heil G, Ganser A, Döhner H. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358:1909–18. https://doi.org/10.1056/NEJMoa074306.

    Article  CAS  PubMed  Google Scholar 

  42. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532 LP–1542.

    Article  CAS  Google Scholar 

  43. Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003;3:650–65. https://doi.org/10.1038/nrc1169.

    Article  CAS  PubMed  Google Scholar 

  44. Frohling S, Scholl C, Gilliland DG, Levine RL. Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol. 2005;23:6285–95. https://doi.org/10.1200/JCO.2005.05.010.

    Article  CAS  PubMed  Google Scholar 

  45. Mead AJ, Linch DC, Hills RK, Wheatley K, Burnett AK, Gale RE. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood. 2007;110:1262–70. https://doi.org/10.1182/blood-2006-04-015826.

    Article  CAS  PubMed  Google Scholar 

  46. Choudhary C, Schwable J, Brandts C, Tickenbrock L, Sargin B, Kindler T, Fischer T, Berdel WE, Muller-Tidow C, Serve H. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood. 2005;106:265–73. https://doi.org/10.1182/blood-2004-07-2942.

    Article  CAS  PubMed  Google Scholar 

  47. Spiekermann K, Dirschinger RJ, Schwab R, Bagrintseva K, Faber F, Buske C, Schnittger S, Kelly LM, Gilliland DG, Hiddemann W. The protein tyrosine kinase inhibitor SU5614 inhibits FLT3 and induces growth arrest and apoptosis in AML-derived cell lines expressing a constitutively activated FLT3. Blood. 2003;101:1494–504. https://doi.org/10.1182/blood-2002-04-1045.

    Article  CAS  PubMed  Google Scholar 

  48. Ozeki K, Kiyoi H, Hirose Y, Iwai M, Ninomiya M, Kodera Y, Miyawaki S, Kuriyama K, Shimazaki C, Akiyama H, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Ueda R, Ohno R, Emi N, Naoe T. Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood. 2004;103:1901–8. https://doi.org/10.1182/blood-2003-06-1845.

    Article  CAS  PubMed  Google Scholar 

  49. Zheng R, Levis M, Piloto O, Brown P, Baldwin BR, Gorin NC, Beran M, Zhu Z, Ludwig D, Hicklin D, Witte L, Li Y, Small D. FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood. 2004;103:267–74. https://doi.org/10.1182/blood-2003-06-1969.

    Article  CAS  PubMed  Google Scholar 

  50. Caligiuri MA, Briesewitz R, Yu J, Wang L, Wei M, Arnoczky KJ, Marburger TB, Wen J, Perrotti D, Bloomfield CD, Whitman SP. Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia. Blood. 2007;110:1022–4. https://doi.org/10.1182/blood-2006-12-061176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sargin B, Choudhary C, Crosetto N, Schmidt MHH, Grundler R, Rensinghoff M, Thiessen C, Tickenbrock L, Schwable J, Brandts C, August B, Koschmieder S, Bandi SR, Duyster J, Berdel WE, Muller-Tidow C, Dikic I, Serve H. Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood. 2007;110:1004–12. https://doi.org/10.1182/blood-2007-01-066076.

    Article  CAS  PubMed  Google Scholar 

  52. Allen C, Hills RK, Lamb K, Evans C, Tinsley S, Sellar R, O’Brien M, Yin JL, Burnett a K, Linch DC, Gale RE. The importance of relative mutant level for evaluating impact on outcome of KIT, FLT3 and CBL mutations in core-binding factor acute myeloid leukemia. Leukemia. 2013;27:1891–901. https://doi.org/10.1038/leu.2013.186.

    Article  CAS  PubMed  Google Scholar 

  53. Poiré X, Moser BK, Gallagher RE, Laumann K, Bloomfield CD, Powell BL, Koval G, Gulati K, Holowka N, Larson RA, Tallman MS, Appelbaum FR, Sher D, Willman C, Paietta E, Stock W. Arsenic trioxide in front-line therapy of acute promyelocytic leukemia (C9710): prognostic significance of FLT3 mutations and complex karyotype. Leuk Lymphoma. 2014;55:1523–32. https://doi.org/10.3109/10428194.2013.842985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Paschka P, Marcucci G, Ruppert AS, Mrozek K, Chen H, Kittles RA, Vukosavljevic T, Perrotti D, Vardiman JW, Carroll AJ, Kolitz JE, Larson RA, Bloomfield CD. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol. 2006;24:3904–11. https://doi.org/10.1200/JCO.2006.06.9500.

    Article  CAS  PubMed  Google Scholar 

  55. Lennartsson J, Jelacic T, Linnekin D, Shivakrupa R. Normal and oncogenic forms of the receptor tyrosine kinase kit. Stem Cells. 2005;23:16–43. https://doi.org/10.1634/stemcells.2004-0117.

    Article  CAS  PubMed  Google Scholar 

  56. Mitin N, Rossman KL, Der CJ. Signaling interplay in Ras superfamily function. Curr Biol. 2005;15:R563–74. https://doi.org/10.1016/j.cub.2005.07.010.

    Article  CAS  PubMed  Google Scholar 

  57. Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3:459–65. https://doi.org/10.1038/nrc1097.

    Article  CAS  PubMed  Google Scholar 

  58. Van Meter MEM, Diaz-Flores E, Archard JA, Passegue E, Irish JM, Kotecha N, Nolan GP, Shannon K, Braun BS. K-RasG12D expression induces hyperproliferation and aberrant signaling in primary hematopoietic stem/progenitor cells. Blood. 2007;109:3945–52. https://doi.org/10.1182/blood-2006-09-047530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Martelli AM, Nyakern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C, Cocco L. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia. 2006;20:911–28. https://doi.org/10.1038/sj.leu.2404245.

    Article  CAS  PubMed  Google Scholar 

  60. Platanias LC. Map kinase signaling pathways and hematologic malignancies. Blood. 2003;101:4667–79. https://doi.org/10.1182/blood-2002-12-3647.

    Article  CAS  PubMed  Google Scholar 

  61. Ewings KE, Hadfield-Moorhouse K, Wiggins CM, Wickenden JA, Balmanno K, Gilley R, Degenhardt K, White E, Cook SJ. ERK1/2-dependent phosphorylation of BimEL promotes its rapid dissociation from Mcl-1 and Bcl-xL. EMBO J. 2007;26:2856–67. https://doi.org/10.1038/sj.emboj.7601723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Martelli AM, Evangelisti C, Chiarini F, McCubrey JA. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget. 2010;1:89–103. 10.18632/oncotarget.114.

    PubMed  PubMed Central  Google Scholar 

  63. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, Kennedy JA, Schimmer AD, Schuh AC, Yee KW, McLeod JL, Doedens M, Medeiros JJF, Marke R, Kim HJ, Lee K, McPherson JD, Hudson TJ, Brown AMK, Yousif F, Trinh QM, Stein LD, Minden MD, Wang JCY, Dick JE. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33. https://doi.org/10.1038/nature13038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia J, Kandoth C, Fulton RS, McLellan MD, Dooling DJ, Wallis JW, Chen K, Harris CC, Schmidt HK, Kalicki-Veizer JM, Lu C, Zhang Q, Lin L, O’Laughlin MD, McMichael JF, Delehaunty KD, Fulton LA, Magrini VJ, McGrath SD, Demeter RT, Vickery TL, Hundal J, Cook LL, Swift GW, Reed JP, Alldredge PA, Wylie TN, Walker JR, Watson MA, Heath SE, Shannon WD, Varghese N, Nagarajan R, Payton JE, Baty JD, Kulkarni S, Klco JM, Tomasson MH, Westervelt P, Walter MJ, Graubert TA, DiPersio JF, Ding L, Mardis ER, Wilson RK. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150:264–78. https://doi.org/10.1016/j.cell.2012.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93. https://doi.org/10.1016/j.cell.2012.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Beauchamp EM, Platanias LC. The evolution of the TOR pathway and its role in cancer. Oncogene. 2013;32:3923–32. https://doi.org/10.1038/onc.2012.567.

    Article  CAS  PubMed  Google Scholar 

  67. Aoki Y, Matsubara Y. Ras/MAPK syndromes and childhood hemato-oncological diseases. Int J Hematol. 2013;97:30–6. https://doi.org/10.1007/s12185-012-1239-y.

    Article  CAS  PubMed  Google Scholar 

  68. Pritchard AL, Hayward NK. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. Clin Cancer Res. 2013;19:2301–9. https://doi.org/10.1158/1078-0432.CCR-12-0383.

    Article  CAS  PubMed  Google Scholar 

  69. Furqan M, Mukhi N, Lee B, Liu D. Dysregulation of JAK-STAT pathway in hematological malignancies and JAK inhibitors for clinical application. Biomark Res. 2013;1:5. https://doi.org/10.1186/2050-7771-1-5

  70. Lo M-C, Peterson LF, Yan M, Cong X, Hickman JH, Dekelver RC, Niewerth D, Zhang D-E. JAK inhibitors suppress t(8;21) fusion protein-induced leukemia. Leukemia. 2013;27:2272–9. https://doi.org/10.1038/leu.2013.197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Muller C, Gruning W, Kratz-Albers K, Serve S, Steur C, Buchner T, Kienast J, Kanakura Y, Berdel WE, Serve H. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood. 2000;96:3907–14.

    CAS  PubMed  Google Scholar 

  72. Mendler JH, Maharry K, Radmacher MD, Mrózek K, Becker H, Metzeler KH, Schwind S, Whitman SP, Khalife J, Kohlschmidt J, Nicolet D, Powell BL, Carter TH, Wetzler M, Moore JO, Kolitz JE, Baer MR, Carroll AJ, Larson RA, Caligiuri MA, Marcucci G, Bloomfield CD. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and microRNA expression signatures. J Clin Oncol. 2012;30:3109–18. https://doi.org/10.1200/JCO.2011.40.6652.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rücker FG, Schlenk RF, Bullinger L, Kayser S, Teleanu V, Kett H, Habdank M, Kugler CM, Holzmann K, Gaidzik VI, Paschka P, Held G, Von Lilienfeld-Toal M, Lübbert M, Fröhling S, Zenz T, Krauter J, Schlegelberger B, Ganser A, Lichter P, Döhner K, Döhner H. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012;119:2114–21. https://doi.org/10.1182/blood-2011-08-375758.

    Article  PubMed  CAS  Google Scholar 

  74. Leroy H, Roumier C, Huyghe P, Biggio V, Fenaux P, Preudhomme C. CEBPA point mutations in hematological malignancies. Leukemia. 2005;19:329–34. https://doi.org/10.1038/sj.leu.2403614.

    Article  CAS  PubMed  Google Scholar 

  75. Wouters BJ, Löwenberg B, Erpelinck-Verschueren CAJ, Van Putten WLJ, Valk PJM, Delwel R. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 2009;113:3088–91. https://doi.org/10.1182/blood-2008-09-179895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821–61. https://doi.org/10.1146/annurev.biochem.68.1.821.

    Article  CAS  PubMed  Google Scholar 

  77. Shankar DB, Cheng JC, Kinjo K, Federman N, Moore TB, Gill A, Rao NP, Landaw EM, Sakamoto KM. The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell. 2005;7:351–62. https://doi.org/10.1016/j.ccr.2005.02.018.

    Article  CAS  PubMed  Google Scholar 

  78. Shankar DB, Cheng JC, Sakamoto KM. Role of cyclic AMP response element binding protein in human leukemias. Cancer. 2005;104:1819–24. https://doi.org/10.1002/cncr.21401.

    Article  CAS  PubMed  Google Scholar 

  79. Cho E-C, Mitton B, Sakamoto KM. CREB and leukemogenesis. Crit Rev Oncog. 2011;16:37–46.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Esparza SD, Chang J, Shankar DB, Zhang B, Nelson SF, Sakamoto KM. CREB regulates Meis1 expression in normal and malignant hematopoietic cells. Leukemia. 2008;22:665–7. https://doi.org/10.1038/sj.leu.2404933.

    Article  CAS  PubMed  Google Scholar 

  81. Pigazzi M, Manara E, Baron E, Basso G. miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res. 2009;69:2471–8. https://doi.org/10.1158/0008-5472.CAN-08-3404.

    Article  CAS  PubMed  Google Scholar 

  82. Pigazzi M, Manara E, Bresolin S, Tregnago C, Beghin A, Baron E, Giarin E, Cho E-C, Masetti R, Rao DS, Sakamoto KM, Basso G. MicroRNA-34b promoter hypermethylation induces CREB overexpression and contributes to myeloid transformation. Haematologica. 2013;98:602–10. https://doi.org/10.3324/haematol.2012.070664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schnittger S, Schoch C. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood. 2005;106:3733–40. https://doi.org/10.1182/blood-2005-06-2248.Supported.

    Article  CAS  PubMed  Google Scholar 

  84. Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan P-K, Knudsen ES, Hofmann IA, Snyder JD, Bove KE, Fukasawa K. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell. 2000;103:127–40. https://doi.org/10.1016/S0092-8674(00)00093-3.

    Article  CAS  PubMed  Google Scholar 

  85. Negi SS, Olson MOJ. Effects of interphase and mitotic phosphorylation on the mobility and location of nucleolar protein B23. J Cell Sci. 2006;119:3676 LP–3685.

    Article  CAS  Google Scholar 

  86. Rubbi CP, Milner J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J. 2003;22:6068 LP–6077.

    Article  Google Scholar 

  87. MH W, Yung BYM. UV stimulation of nucleophosmin/B23 expression is an immediate-early gene response induced by damaged DNA. J Biol Chem. 2002;277:48234–40. https://doi.org/10.1074/jbc.M206550200.

    Article  Google Scholar 

  88. Li YP, Busch RK, Valdez BC, Busch H. C23 interacts with B23, a putative nucleolar-localization-signal-binding protein. Eur J Biochem. 1996;237:153–8. https://doi.org/10.1111/j.1432-1033.1996.0153n.x.

    Article  CAS  PubMed  Google Scholar 

  89. Valdez BC, Perlaky L, Henning D, Saijo Y, Chan PK, Busch H. Identification of the nuclear and nucleolar localization signals of the protein p120: interaction with translocation protein B23. J Biol Chem. 1994;269:23776–83.

    CAS  PubMed  Google Scholar 

  90. Colombo E, Marine J-C, Danovi D, Falini B, Pelicci PG. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol. 2002;4:529–33.

    Article  CAS  PubMed  Google Scholar 

  91. Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D, Laiho M. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell. 2004;5:465–75. https://doi.org/10.1016/S1535-6108(04)00110-2.

    Article  CAS  PubMed  Google Scholar 

  92. Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R, Zhang Y. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell. 2003;12:1151–64. https://doi.org/10.1016/S1097-2765(03)00431-3.

    Article  CAS  PubMed  Google Scholar 

  93. Korgaonkar C, Hagen J, Tompkins V, Frazier AA, Allamargot C, Quelle FW, Quelle DE. Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol. 2005;25:1258–71. https://doi.org/10.1128/MCB.25.4.1258-1271.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mariano AR, Colombo E, Luzi L, Martinelli P, Volorio S, Bernard L, Meani N, Bergomas R, Alcalay M, Pelicci PG. Cytoplasmic localization of NPM in myeloid leukemias is dictated by gain-of-function mutations that create a functional nuclear export signal. Oncogene. 2006;25:4376–80.

    Article  CAS  PubMed  Google Scholar 

  95. Falini B, Nicoletti I, Martelli MF, Mecucci C. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood. 2007;109:874–85.

    Article  CAS  PubMed  Google Scholar 

  96. Falini B, Bolli N, Shan J, Martelli MP, Liso A, Pucciarini A, Bigerna B, Pasqualucci L, Mannucci R, Rosati R, Gorello P, Diverio D, Roti G, Tiacci E, Cazzaniga G, Biondi A, Schnittger S, Haferlach T, Hiddemann W, Martelli MF, Gu W, Mecucci C, Nicoletti I. Both carboxy-terminus NES motif and mutated tryptophan(s) are crucial for aberrant nuclear export of nucleophosmin leukemic mutants in NPMc+ AML. Blood. 2006;107:4514–23. https://doi.org/10.1182/blood-2005-11-4745.

    Article  CAS  PubMed  Google Scholar 

  97. Morris SW, Kirstein MN, Valentine MB, Dittmer K, Shapiro DN, Look AT, Saltman DL. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science. 1995;267:316–7.

    Article  CAS  PubMed  Google Scholar 

  98. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood. 1996;87:882–6.

    CAS  PubMed  Google Scholar 

  99. Redner RL, Chen JD, Rush EA, Li H, Pollock SL. The t(5;17) acute promyelocytic leukemia fusion protein NPM-RAR interacts with co-repressor and co-activator proteins and exhibits both positive and negative transcriptional properties. Blood. 2000;95:2683–90.

    CAS  PubMed  Google Scholar 

  100. Okazuka K, Masuko M, Seki Y, Hama H, Honma N, Furukawa T, Toba K, Kishi K, Aizawa Y. Successful all-trans retinoic acid treatment of acute promyelocytic leukemia in a patient with NPM/RAR fusion. Int J Hematol. 2007;86:246–9. https://doi.org/10.1532/IJH97.07036.

    Article  CAS  PubMed  Google Scholar 

  101. Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ, Carroll AJ, Morris SW. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene. 1996;12:265–75.

    CAS  PubMed  Google Scholar 

  102. Yoneda-Kato N, Kato J-Y. Shuttling imbalance of MLF1 results in p53 instability and increases susceptibility to oncogenic transformation. Mol Cell Biol. 2008;28:422–34. https://doi.org/10.1128/MCB.02335-06.

    Article  CAS  PubMed  Google Scholar 

  103. Falini B, Mecucci C, Saglio G, Lo Coco F, Diverio D, Brown P, Pane F, Mancini M, Martelli MP, Pileri S, Haferlach T, Haferlach C, Schnittger S. NPM1 mutations and cytoplasmic nucleophosmin are mutually exclusive of recurrent genetic abnormalities: a comparative analysis of 2562 patients with acute myeloid leukemia. Haematologica. 2008;93:439–42. https://doi.org/10.3324/haematol.12153.

    Article  CAS  PubMed  Google Scholar 

  104. Ammatuna E, Noguera NI, Zangrilli D, Curzi P, Panetta P, Bencivenga P, Amadori S, Federici G, Lo-Coco F. Rapid detection of nucleophosmin Flt3 mutations in acute myeloid leukemia by denaturing HPLC. Clin Chem. 2005;51:2165–7.

    Article  CAS  PubMed  Google Scholar 

  105. Falini B, Martelli MP, Bolli N, Bonasso R, Ghia E, Pallotta MT, Diverio D, Nicoletti I, Pacini R, Tabarrini A, Galletti BV, Mannucci R, Roti G, Rosati R, Specchia G, Liso A, Tiacci E, Alcalay M, Luzi L, Volorio S, Bernard L, Guarini A, Amadori S, Mandelli F, Pane F, Lo-Coco F, Saglio G, Pelicci P-G, Martelli MF, Mecucci C. Immunohistochemistry predicts nucleophosmin (NPM) mutations in acute myeloid leukemia. Blood. 2006;108:1999–2005. https://doi.org/10.1182/blood-2006-03-007013.

    Article  CAS  PubMed  Google Scholar 

  106. Gorello P, Cazzaniga G, Alberti F, Dell’Oro MG, Gottardi E, Specchia G, Roti G, Rosati R, Martelli MF, Diverio D, Lo Coco F, Biondi A, Saglio G, Mecucci C, Falini B. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia. 2006;20:1103–8. https://doi.org/10.1038/sj.leu.2404149.

    Article  CAS  PubMed  Google Scholar 

  107. Martelli MP, Manes N, Liso A, Pettirossi V, Verducci Galletti B, Bigerna B, Pucciarini A, De Marco MF, Pallotta MT, Bolli N, Sborgia M, di Raimondo F, Fabbiano F, Meloni G, Specchia G, Martelli MF, Falini B. A western blot assay for detecting mutant nucleophosmin (NPM1) proteins in acute myeloid leukaemia. Leukemia. 2008;22:2285–8. https://doi.org/10.1038/leu.2008.149.

    Article  CAS  PubMed  Google Scholar 

  108. Noguera NI, Ammatuna E, Zangrilli D, Lavorgna S, Divona M, Buccisano F, Amadori S, Mecucci C, Falini B, Lo-Coco F. Simultaneous detection of NPM1 and FLT3-ITD mutations by capillary electrophoresis in acute myeloid leukemia. Leukemia. 2005;19:1479–82. https://doi.org/10.1038/sj.leu.2403846.

    Article  CAS  PubMed  Google Scholar 

  109. Bacher U, Badbaran A, Fehse B, Zabelina T, Zander AR, Kroger N. Quantitative monitoring of NPM1 mutations provides a valid minimal residual disease parameter following allogeneic stem cell transplantation. Exp Hematol. 2009;37:135–42. https://doi.org/10.1016/j.exphem.2008.09.014.

    Article  CAS  PubMed  Google Scholar 

  110. Papadaki C, Dufour A, Seibl M, Schneider S, Bohlander SK, Zellmeier E, Mellert G, Hiddemann W, Spiekermann K. Monitoring minimal residual disease in acute myeloid leukaemia with NPM1 mutations by quantitative PCR: clonal evolution is a limiting factor. Br J Haematol. 2009;144:517–23. https://doi.org/10.1111/j.1365-2141.2008.07488.x.

    Article  CAS  PubMed  Google Scholar 

  111. Ma W, Kantarjian H, Zhang X, Jilani I, Sheikholeslami MR, Donahue AC, Ravandi F, Estey E, O’Brien S, Keating M, Giles FJ, Albitar M. Detection of nucleophosmin gene mutations in plasma from patients with acute myeloid leukemia: clinical significance and implications. Cancer Biomark. 2009;5:51–8. https://doi.org/10.3233/CBM-2009-0583.

    Article  CAS  PubMed  Google Scholar 

  112. Gruszka AM, Lavorgna S, Consalvo MI, Ottone T, Martinelli C, Cinquanta M, Ossolengo G, Pruneri G, Buccisano F, Divona M, Cedrone M, Ammatuna E, Venditti A, De Marco A, Lo-Coco F, Pelicci PG. A monoclonal antibody against mutated nucleophosmin 1 for the molecular diagnosis of acute myeloid leukemias. Blood. 2010;116:2096–102. https://doi.org/10.1182/blood-2010-01-266908.

    Article  CAS  PubMed  Google Scholar 

  113. Gruszka AM, Martinelli C, Sparacio E, Pelicci PG, De Marco A. The concurrent use of N- and C-terminal antibodies anti-nucleophosmin 1 in immunofluorescence experiments allows for precise assessment of its subcellular localisation in acute myeloid leukaemia patients. Leukemia. 2012;26:159–62. https://doi.org/10.1038/leu.2011.177.

    Article  CAS  PubMed  Google Scholar 

  114. Yang L, Rau R, Goodell MA. DNMT3A in haematological malignancies. Nat Rev Cancer. 2015;15:152–65. https://doi.org/10.1038/nrc3895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O’Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363:2424–33. https://doi.org/10.1056/NEJMoa1005143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gaidzik VI, Schlenk RF, Paschka P, Stolzle A, Spath D, Kuendgen A, von Lilienfeld-Toal M, Brugger W, Derigs HG, Kremers S, Greil R, Raghavachar A, Ringhoffer M, Salih HR, Wattad M, Kirchen HG, Runde V, Heil G, Petzer AL, Girschikofsky M, Heuser M, Kayser S, Goehring G, Teleanu M-V, Schlegelberger B, Ganser A, Krauter J, Bullinger L, Dohner H, Dohner K. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: results of the AML Study Group (AMLSG). Blood. 2013;121:4769–77. https://doi.org/10.1182/blood-2012-10-461624.

    Article  CAS  PubMed  Google Scholar 

  117. Marcucci G, Metzeler KH, Schwind S, Becker H, Maharry K, Mrozek K, Radmacher MD, Kohlschmidt J, Nicolet D, Whitman SP, Y-Z W, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Moore JO, Caligiuri MA, Larson RA, Bloomfield CD. Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. J Clin Oncol. 2012;30:742–50. https://doi.org/10.1200/JCO.2011.39.2092.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Gale RE, Lamb K, Allen C, El-Sharkawi D, Stowe C, Jenkinson S, Tinsley S, Dickson G, Burnett AK, Hills RK, Linch DC. Simpson’s paradox and the impact of different DNMT3A mutations on outcome in younger adults with acute myeloid leukemia. J Clin Oncol. 2015;33:2072–83. https://doi.org/10.1200/JCO.2014.59.2022.

    Article  CAS  PubMed  Google Scholar 

  119. Luskin MR, Lee J-W, Fernandez HF, Abdel-Wahab O, Bennett JM, Ketterling RP, Lazarus HM, Levine RL, Litzow MR, Paietta EM, Patel JP, Racevskis J, Rowe JM, Tallman MS, Sun Z, Luger SM. Benefit of high-dose daunorubicin in AML induction extends across cytogenetic and molecular groups. Blood. 2016;127:1551–8. https://doi.org/10.1182/blood-2015-07-657403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Metzeler KH, Walker A, Geyer S, Garzon R, Klisovic RB, Bloomfield CD, Blum W, Marcucci G. DNMT3A mutations and response to the hypomethylating agent decitabine in acute myeloid leukemia. Leukemia. 2012;26:1106–7. https://doi.org/10.1038/leu.2011.342.

    Article  CAS  PubMed  Google Scholar 

  121. Celik H, Mallaney C, Kothari A, Ostrander EL, Eultgen E, Martens A, Miller CA, Hundal J, Klco JM, Challen GA. Enforced differentiation of Dnmt3a-null bone marrow leads to failure with c-Kit mutations driving leukemic transformation. Blood. 2015;125:619–28. https://doi.org/10.1182/blood-2014-08-594564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD, Fulton LA, Locke DP, Magrini VJ, Abbott RM, Vickery TL, Reed JS, Robinson JS, Wylie T, Smith SM, Carmichael L, Eldred JM, Harris CC, Walker J, Peck JB, Du F, Dukes AF, Sanderson GE, Brummett AM, Clark E, McMichael JF, Meyer RJ, Schindler JK, Pohl CS, Wallis JW, Shi X, Lin L, Schmidt H, Tang Y, Haipek C, Wiechert ME, Ivy JV, Kalicki J, Elliott G, Ries RE, Payton JE, Westervelt P, Tomasson MH, Watson MA, Baty J, Heath S, Shannon WD, Nagarajan R, Link DC, Walter MJ, Graubert TA, DiPersio JF, Wilson RK, Ley TJ. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361:1058–66. https://doi.org/10.1056/NEJMoa0903840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Marcucci G, Maharry K, Y-Z W, Radmacher MD, Mrozek K, Margeson D, Holland KB, Whitman SP, Becker H, Schwind S, Metzeler KH, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Caligiuri MA, Larson RA, Bloomfield CD. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol. 2010;28:2348–55. https://doi.org/10.1200/JCO.2009.27.3730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Kronke J, Bullinger L, Spath D, Kayser S, Zucknick M, Gotze K, Horst H-A, Germing U, Dohner H, Dohner K. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol. 2010;28:3636–43. https://doi.org/10.1200/JCO.2010.28.3762.

    Article  CAS  PubMed  Google Scholar 

  125. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Lowenberg B, Licht JD, Godley LA, Delwel R, Valk PJM, Thompson CB, Levine RL, Melnick A. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553–67. https://doi.org/10.1016/j.ccr.2010.11.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, SM S, Sharp KA, Levine RL, Thompson CB. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34. https://doi.org/10.1016/j.ccr.2010.01.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gaidzik VI, Paschka P, Spath D, Habdank M, Kohne C-H, Germing U, von Lilienfeld-Toal M, Held G, Horst H-A, Haase D, Bentz M, Gotze K, Dohner H, Schlenk RF, Bullinger L, Dohner K. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J Clin Oncol. 2012;30:1350–7. https://doi.org/10.1200/JCO.2011.39.2886.

    Article  CAS  PubMed  Google Scholar 

  128. Krivtsov AV, Figueroa ME, Sinha AU, Stubbs MC, Feng Z, Valk PJM, Delwel R, Dohner K, Bullinger L, Kung AL, Melnick AM, Armstrong SA. Cell of origin determines clinically relevant subtypes of MLL-rearranged AML. Leukemia. 2013;27:852–60. https://doi.org/10.1038/leu.2012.363.

    Article  CAS  PubMed  Google Scholar 

  129. Whitman SP, Ruppert AS, Marcucci G, Mrozek K, Paschka P, Langer C, Baldus CD, Wen J, Vukosavljevic T, Powell BL, Carroll AJ, Kolitz JE, Larson RA, Caligiuri MA, Bloomfield CD. Long-term disease-free survivors with cytogenetically normal acute myeloid leukemia and MLL partial tandem duplication: a Cancer and Leukemia Group B study. Blood. 2007;109:5164–7. https://doi.org/10.1182/blood-2007-01-069831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Neff T, Armstrong SA. Recent progress toward epigenetic therapies: the example of mixed lineage leukemia. Blood. 2013;121:4847–53. https://doi.org/10.1182/blood-2013-02-474833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. de Boer J, Walf-Vorderwulbecke V, Williams O. In focus: MLL-rearranged leukemia. Leukemia. 2013;27:1224–8. https://doi.org/10.1038/leu.2013.78.

    Article  PubMed  CAS  Google Scholar 

  132. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, Waghorn K, Zoi K, Ross FM, Reiter A, Hochhaus A, Drexler HG, Duncombe A, Cervantes F, Oscier D, Boultwood J, Grand FH, Cross NCP. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42:722–6. https://doi.org/10.1038/ng.621.

    Article  CAS  PubMed  Google Scholar 

  133. Nikoloski G, Langemeijer SMC, Kuiper RP, Knops R, Massop M, Tonnissen ERLTM, van der Heijden A, Scheele TN, Vandenberghe P, de Witte T, van der Reijden BA, Jansen JH. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet. 2010;42:665–7. https://doi.org/10.1038/ng.620.

    Article  CAS  PubMed  Google Scholar 

  134. Paschka P, Schlenk RF, Gaidzik VI, Herzig JK, Aulitzky T, Bullinger L, Spath D, Teleanu V, Kundgen A, Kohne C-H, Brossart P, Held G, Horst H-A, Ringhoffer M, Gotze K, Nachbaur D, Kindler T, Heuser M, Thol F, Ganser A, Dohner H, Dohner K. ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German-Austrian Acute Myeloid Leukemia Study Group. Haematologica. 2015;100:324–30. https://doi.org/10.3324/haematol.2014.114157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Izutsu K, Kurokawa M, Imai Y, Maki K, Mitani K, Hirai H. The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood. 2001;97:2815–22.

    Article  CAS  PubMed  Google Scholar 

  136. Senyuk V, Chakraborty S, Mikhail FM, Zhao R, Chi Y, Nucifora G. The leukemia-associated transcription repressor AML1/MDS1/EVI1 requires CtBP to induce abnormal growth and differentiation of murine hematopoietic cells. Oncogene. 2002;21:3232–40. https://doi.org/10.1038/sj.onc.1205436.

    Article  CAS  PubMed  Google Scholar 

  137. Villa R, Morey L, Raker VA, Buschbeck M, Gutierrez A, De Santis F, Corsaro M, Varas F, Bossi D, Minucci S, Pelicci PG, Di Croce L. The methyl-CpG binding protein MBD1 is required for PML-RARalpha function. Proc Natl Acad Sci U S A. 2006;103:1400–5. https://doi.org/10.1073/pnas.0509343103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Santoro F, Botrugno OA, Dal Zuffo R, Pallavicini I, Matthews GM, Cluse L, Barozzi I, Senese S, Fornasari L, Moretti S, Altucci L, Pelicci PG, Chiocca S, Johnstone RW, Minucci S. A dual role for Hdac1: oncosuppressor in tumorigenesis, oncogene in tumor maintenance. Blood. 2013;121:3459–68. https://doi.org/10.1182/blood-2012-10-461988.

    Article  CAS  PubMed  Google Scholar 

  139. Spensberger D, Vermeulen M, Le Guezennec X, Beekman R, van Hoven A, Bindels E, Stunnenberg H, Delwel R. Myeloid transforming protein Evi1 interacts with methyl-CpG binding domain protein 3 and inhibits in vitro histone deacetylation by Mbd3/Mi-2/NuRD. Biochemistry. 2008;47:6418–26. https://doi.org/10.1021/bi800267f.

    Article  CAS  PubMed  Google Scholar 

  140. Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer. 2012;12:465–77. https://doi.org/10.1038/nrc3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. S-Y W, Chiang C-M. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem. 2007;282:13141–5. https://doi.org/10.1074/jbc.R700001200.

    Article  CAS  Google Scholar 

  142. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan W-I, Robson SC, Chung C, Hopf C, Savitski MM, Huthmacher C, Gudgin E, Lugo D, Beinke S, Chapman TD, Roberts EJ, Soden PE, Auger KR, Mirguet O, Doehner K, Delwel R, Burnett AK, Jeffrey P, Drewes G, Lee K, Huntly BJP, Kouzarides T. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478:529–33. https://doi.org/10.1038/nature10509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE. Selective inhibition of BET bromodomains. Nature. 2010;468:1067–73. https://doi.org/10.1038/nature09504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung C-W, Chandwani R, Marazzi I, Wilson P, Coste H, White J, Kirilovsky J, Rice CM, Lora JM, Prinjha RK, Lee K, Tarakhovsky A. Suppression of inflammation by a synthetic histone mimic. Nature. 2010;468:1119–23. https://doi.org/10.1038/nature09589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Marteijn JAF, van Emst L, Erpelinck-Verschueren CAJ, Nikoloski G, Menke A, de Witte T, Lowenberg B, Jansen JH, van der Reijden BA. The E3 ubiquitin-protein ligase Triad1 inhibits clonogenic growth of primary myeloid progenitor cells. Blood. 2005;106:4114–23. https://doi.org/10.1182/blood-2005-04-1450.

    Article  CAS  PubMed  Google Scholar 

  146. Marteijn JA, van der Meer LT, Smit JJ, Noordermeer SM, Wissink W, Jansen P, Swarts HG, Hibbert RG, de Witte T, Sixma TK, Jansen JH, van der Reijden BA. The ubiquitin ligase Triad1 inhibits myelopoiesis through UbcH7 and Ubc13 interacting domains. Leukemia. 2009;23:1480–9. https://doi.org/10.1038/leu.2009.57.

    Article  CAS  PubMed  Google Scholar 

  147. Pietschmann K, Buchwald M, Muller S, Knauer SK, Kogl M, Heinzel T, Kramer OH. Differential regulation of PML-RARalpha stability by the ubiquitin ligases SIAH1/SIAH2 and TRIAD1. Int J Biochem Cell Biol. 2012;44:132–8. https://doi.org/10.1016/j.biocel.2011.10.008.

    Article  CAS  PubMed  Google Scholar 

  148. Johansson B, Billstrom R, Kristoffersson U, Akerman M, Garwicz S, Ahlgren T, Malm C, Mitelman F. Deletion of chromosome arm 3p in hematologic malignancies. Leukemia. 1997;11:1207–13.

    Article  CAS  PubMed  Google Scholar 

  149. Shi G, Weh HJ, Martensen S, Seeger D, Hossfeld DK. 3p21 is a recurrent treatment-related breakpoint in myelodysplastic syndrome and acute myeloid leukemia. Cytogenet Cell Genet. 1996;74:295–9.

    Article  CAS  PubMed  Google Scholar 

  150. Zhu X, He F, Zeng H, Ling S, Chen A, Wang Y, Yan X, Wei W, Pang Y, Cheng H, Hua C, Zhang Y, Yang X, Lu X, Cao L, Hao L, Dong L, Zou W, Wu J, Li X, Zheng S, Yan J, Zhou J, Zhang L, Mi S, Wang X, Zhang L, Zou Y, Chen Y, Geng Z, Wang J, Zhou J, Liu X, Wang J, Yuan W, Huang G, Cheng T, Wang Q-F. Identification of functional cooperative mutations of SETD2 in human acute leukemia. Nat Genet. 2014;46:287–93. https://doi.org/10.1038/ng.2894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 2004;6:1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang H, Bei L, Shah CA, Horvath E, Eklund EA. HoxA10 influences protein ubiquitination by activating transcription of ARIH2, the gene encoding triad1. J Biol Chem. 2011;286(19):16832–45. https://doi.org/10.1074/jbc.M110.213975

  153. Thorsteinsdottir U, Sauvageau G, Hough MR, Dragowska W, Lansdorp PM, Lawrence HJ, Largman C, Humphries RK. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol Cell Biol. 1997;17:495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bjornsson JM, Andersson E, Lundstrom P, Larsson N, Xu X, Repetowska E, Humphries RK, Karlsson S. Proliferation of primitive myeloid progenitors can be reversibly induced by HOXA10. Blood. 2001;98:3301–8.

    Article  CAS  PubMed  Google Scholar 

  155. Camós M, Esteve J, Jares P, Colomer D, Rozman M, Villamor N, Costa D, Carrió A, Nomdedéu J, Montserrat E, Campo E. Gene expression profiling of acute myeloid leukemia with translocation t(8;16)(p11;p13) and MYST3-CREBBP rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression. Cancer Res. 2006;66:6947–54.

    Article  PubMed  Google Scholar 

  156. Hills RK, Castaigne S, Appelbaum FR, Delaunay J, Petersdorf S, Othus M, Estey EH, Dombret H, Chevret S, Ifrah N, Cahn J-Y, Recher C, Chilton L, Moorman AV, Burnett AK. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: a meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014;15:986–96. https://doi.org/10.1016/S1470-2045(14)70281-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Armand P, Kim HT, Logan BR, Wang Z, Alyea EP, Kalaycio ME, Maziarz RT, Antin JH, Soiffer RJ, Weisdorf DJ, Rizzo JD, Horowitz MM, Saber W. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood. 2014;123:3664–71. https://doi.org/10.1182/blood-2014-01-552984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gupta V, Tallman MS, Weisdorf DJ. Allogeneic hematopoietic cell transplantation for adults with acute myeloid leukemia: myths, controversies, and unknowns. Blood. 2011;117:2307–18. https://doi.org/10.1182/blood-2010-10-265603.

    Article  CAS  PubMed  Google Scholar 

  159. Sorror ML, Storb RF, Sandmaier BM, Maziarz RT, Pulsipher MA, Maris MB, Bhatia S, Ostronoff F, Deeg HJ, Syrjala KL, Estey E, Maloney DG, Appelbaum FR, Martin PJ, Storer BE. Comorbidity-age index: a clinical measure of biologic age before allogeneic hematopoietic cell transplantation. J Clin Oncol. 2014;32:3249–56. https://doi.org/10.1200/JCO.2013.53.8157.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Koreth J, Schlenk R, Kopecky KJ, Honda S, Sierra J, Djulbegovic BJ, Wadleigh M, DeAngelo DJ, Stone RM, Sakamaki H, Appelbaum FR, Dohner H, Antin JH, Soiffer RJ, Cutler C. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA. 2009;301:2349–61. https://doi.org/10.1001/jama.2009.813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Gupta V, Tallman MS, He W, Logan BR, Copelan E, Gale RP, Khoury HJ, Klumpp T, Koreth J, Lazarus HM, Marks DI, Martino R, Rizzieri DA, Rowe JM, Sabloff M, Waller EK, DiPersio JF, Bunjes DW, Weisdorf DJ. Comparable survival after HLA-well-matched unrelated or matched sibling donor transplantation for acute myeloid leukemia in first remission with unfavorable cytogenetics at diagnosis. Blood. 2010;116:1839–48. https://doi.org/10.1182/blood-2010-04-278317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. McClune BL, Weisdorf DJ, Pedersen TL, Tunes da Silva G, Tallman MS, Sierra J, Dipersio J, Keating A, Gale RP, George B, Gupta V, Hahn T, Isola L, Jagasia M, Lazarus H, Marks D, Maziarz R, Waller EK, Bredeson C, Giralt S. Effect of age on outcome of reduced-intensity hematopoietic cell transplantation for older patients with acute myeloid leukemia in first complete remission or with myelodysplastic syndrome. J Clin Oncol. 2010;28:1878–87. https://doi.org/10.1200/JCO.2009.25.4821.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Farag SS, Maharry K, Zhang M-J, Perez WS, George SL, Mrozek K, DiPersio J, Bunjes DW, Marcucci G, Baer MR, Cairo M, Copelan E, Cutler CS, Isola L, Lazarus HM, Litzow MR, Marks DI, Ringden O, Rizzieri DA, Soiffer R, Larson RA, Tallman MS, Bloomfield CD, Weisdorf DJ. Comparison of reduced-intensity hematopoietic cell transplantation with chemotherapy in patients age 60–70 years with acute myelogenous leukemia in first remission. Biol Blood Marrow Transplant. 2011;17:1796–803. https://doi.org/10.1016/j.bbmt.2011.06.005.

    Article  PubMed  Google Scholar 

  164. Litzow MR, Tarima S, Perez WS, Bolwell BJ, Cairo MS, Camitta BM, Cutler CS, de Lima M, Dipersio JF, Gale RP, Keating A, Lazarus HM, Luger S, Marks DI, Maziarz RT, McCarthy PL, Pasquini MC, Phillips GL, Rizzo JD, Sierra J, Tallman MS, Weisdorf DJ. Allogeneic transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia. Blood. 2010;115:1850–7. https://doi.org/10.1182/blood-2009-10-249128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, Boeckh M, Martin PJ, Sandmaier BM, Marr KA, Appelbaum FR, Storb R, McDonald GB. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med. 2010;363:2091–101. https://doi.org/10.1056/NEJMoa1004383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. de Lima M, Porter DL, Battiwalla M, Bishop MR, Giralt SA, Hardy NM, Kroger N, Wayne AS, Schmid C. Proceedings from the National Cancer Institute’s second international workshop on the biology, prevention, and treatment of relapse after hematopoietic stem cell transplantation: part III. Prevention and treatment of relapse after allogeneic transplantation. Biol Blood Marrow Transplant. 2014;20:4–13. https://doi.org/10.1016/j.bbmt.2013.08.012.

    Article  PubMed  Google Scholar 

  167. Thol F, Schlenk RF, Heuser M, Ganser A. How I treat refractory and early relapsed acute myeloid leukemia. Blood. 2015;126:319–27. https://doi.org/10.1182/blood-2014-10-551911.

    Article  CAS  PubMed  Google Scholar 

  168. Wander SA, Levis MJ, Fathi AT. The evolving role of FLT3 inhibitors in acute myeloid leukemia: quizartinib and beyond. Ther Adv Hematol. 2014;5:65–77. https://doi.org/10.1177/2040620714532123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Furqan M, Akinleye A, Mukhi N, Mittal V, Chen Y, Liu D. STAT inhibitors for cancer therapy. J Hematol Oncol. 2013;6:90. https://doi.org/10.1186/1756-8722-6-90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Geest CR, Coffer PJ. MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol. 2009;86:237–50. https://doi.org/10.1189/jlb.0209097.

    Article  CAS  PubMed  Google Scholar 

  171. Volk A, Li J, Xin J, You D, Zhang J, Liu X, Xiao Y, Breslin P, Li Z, Wei W, Schmidt R, Li X, Zhang Z, Kuo PC, Nand S, Zhang J, Chen J, Zhang J. Co-inhibition of NF-kappaB and JNK is synergistic in TNF-expressing human AML. J Exp Med. 2014;211:1093–108. https://doi.org/10.1084/jem.20130990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Altman JK, Sassano A, Kaur S, Glaser H, Kroczynska B, Redig AJ, Russo S, Barr S, Platanias LC. Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors. Clin Cancer Res. 2011;17:4378–88. https://doi.org/10.1158/1078-0432.CCR-10-2285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zeng Z, Shi YX, Tsao T, Qiu Y, Kornblau SM, Baggerly KA, Liu W, Jessen K, Liu Y, Kantarjian H, Rommel C, Fruman DA, Andreeff M, Konopleva M. Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment. Blood. 2012;120:2679–89. https://doi.org/10.1182/blood-2011-11-393934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Willems L, Chapuis N, Puissant A, Maciel TT, Green AS, Jacque N, Vignon C, Park S, Guichard S, Herault O, Fricot A, Hermine O, Moura IC, Auberger P, Ifrah N, Dreyfus F, Bonnet D, Lacombe C, Mayeux P, Bouscary D, Tamburini J. The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia. 2012;26:1195–202. https://doi.org/10.1038/leu.2011.339.

    Article  CAS  PubMed  Google Scholar 

  175. Kampa-Schittenhelm KM, Heinrich MC, Akmut F, Rasp KH, Illing B, Dohner H, Dohner K, Schittenhelm MM. Cell cycle-dependent activity of the novel dual PI3K-MTORC1/2 inhibitor NVP-BGT226 in acute leukemia. Mol Cancer. 2013;12:46. https://doi.org/10.1186/1476-4598-12-46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Chapuis N, Tamburini J, Green AS, Vignon C, Bardet V, Neyret A, Pannetier M, Willems L, Park S, Macone A, Maira S-M, Ifrah N, Dreyfus F, Herault O, Lacombe C, Mayeux P, Bouscary D. Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clin Cancer Res. 2010;16:5424–35. https://doi.org/10.1158/1078-0432.CCR-10-1102.

    Article  CAS  PubMed  Google Scholar 

  177. Greger JG, Eastman SD, Zhang V, Bleam MR, Hughes AM, Smitheman KN, Dickerson SH, Laquerre SG, Liu L, Gilmer TM. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther. 2012;11:909–20. https://doi.org/10.1158/1535-7163.MCT-11-0989.

    Article  CAS  PubMed  Google Scholar 

  178. Brundage ME, Tandon P, Eaves DW, Williams JP, Miller SJ, Hennigan RH, Jegga A, Cripe TP, Ratner N. MAF mediates crosstalk between Ras-MAPK and mTOR signaling in NF1. Oncogene. 2014;33:5626–36. https://doi.org/10.1038/onc.2013.506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang W, Ruvolo VR, Gao C, Zhou L, Bornmann W, Tsao T, Schober WD, Smith P, Guichard S, Konopleva M, Andreeff M. Evaluation of apoptosis induction by concomitant inhibition of MEK, mTOR, and Bcl-2 in human acute myelogenous leukemia cells. Mol Cancer Ther. 2014;13:1848–59. https://doi.org/10.1158/1535-7163.MCT-13-0576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kojima K, Kornblau SM, Ruvolo V, Dilip A, Duvvuri S, Davis RE, Zhang M, Wang Z, Coombes KR, Zhang N, Qiu YH, Burks JK, Kantarjian H, Shacham S, Kauffman M, Andreeff M. Prognostic impact and targeting of CRM1 in acute myeloid leukemia. Blood. 2013;121:4166–74. https://doi.org/10.1182/blood-2012-08-447581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. ClinicalTrials.gov Identifier: NCT02088541.

  182. Martinelli C, Colombo E, Piccini D, Sironi C, Pelicci PG, De Marco A. An intrabody specific for the nucleophosmin carboxy-terminal mutant and fused to a nuclear localization sequence binds its antigen but fails to relocate it in the nucleus. Biotechnol Rep. 2014;3:27–33. https://doi.org/10.1016/j.btre.2014.05.008.

    Article  Google Scholar 

  183. Dawson MA, Kouzarides T, Huntly BJP. Targeting epigenetic readers in cancer. N Engl J Med. 2012;367:647–57. https://doi.org/10.1056/NEJMra1112635.

    Article  CAS  PubMed  Google Scholar 

  184. Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood. 2013;121:3563–72. https://doi.org/10.1182/blood-2013-01-451781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang F, Travins J, DeLaBarre B, Penard-Lacronique V, Schalm S, Hansen E, Straley K, Kernytsky A, Liu W, Gliser C, Yang H, Gross S, Artin E, Saada V, Mylonas E, Quivoron C, Popovici-Muller J, Saunders JO, Salituro FG, Yan S, Murray S, Wei W, Gao Y, Dang L, Dorsch M, Agresta S, Schenkein DP, Biller SA, SM S, de Botton S, Yen KE. Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation. Science. 2013;340:622–6. https://doi.org/10.1126/science.1234769.

    Article  CAS  PubMed  Google Scholar 

  186. Yen K, Travins J, Wang F, David MD, Artin E, Straley K, Padyana A, Gross S, DeLaBarre B, Tobin E, Chen Y, Nagaraja R, Choe S, Jin L, Konteatis Z, Cianchetta G, Saunders JO, Salituro FG, Quivoron C, Opolon P, Bawa O, Saada V, Paci A, Broutin S, Bernard OA, de Botton S, Marteyn BS, Pilichowska M, Xu Y, Fang C, Jiang F, Wei W, Jin S, Silverman L, Liu W, Yang H, Dang L, Dorsch M, Penard-Lacronique V, Biller SA, S-SM S. AG-221, a first-in-class therapy targeting acute myeloid leukemia harboring oncogenic IDH2 mutations. Cancer Discov. 2017;7:478–93. https://doi.org/10.1158/2159-8290.CD-16-1034.

    Article  CAS  PubMed  Google Scholar 

  187. Chan SM, Thomas D, Corces-Zimmerman MR, Xavy S, Rastogi S, Hong W-J, Zhao F, Medeiros BC, Tyvoll DA, Majeti R. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 2015;21:178–84. https://doi.org/10.1038/nm.3788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Navada SC, Steinmann J, Lubbert M, Silverman LR. Clinical development of demethylating agents in hematology. J Clin Invest. 2014;124:40–6. https://doi.org/10.1172/JCI69739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Huls G. Azacitidine in AML: a treatment option? Blood. 2015;126:283 LP–284.

    Article  Google Scholar 

  190. Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH, Kumar R, Cavenagh J, Schuh AC, Candoni A, Recher C, Sandhu I, Bernal del Castillo T, Al-Ali HK, Martinelli G, Falantes J, Noppeney R, Stone RM, Minden MD, McIntyre H, Songer S, Lucy LM, Beach CL, Dohner H. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126:291–9. https://doi.org/10.1182/blood-2015-01-621664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S, Liu S, Havelange V, Becker H, Schaaf L, Mickle J, Devine H, Kefauver C, Devine SM, Chan KK, Heerema NA, Bloomfield CD, Grever MR, Byrd JC, Villalona-Calero M, Croce CM, Marcucci G. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci U S A. 2010;107:7473–8. https://doi.org/10.1073/pnas.1002650107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. He J, Xiu L, De Porre P, Dass R, Thomas X. Decitabine reduces transfusion dependence in older patients with acute myeloid leukemia: results from a post hoc analysis of a randomized phase III study. Leuk Lymphoma. 2015;56:1033–42. https://doi.org/10.3109/10428194.2014.951845.

    Article  CAS  PubMed  Google Scholar 

  193. Wagner JM, Hackanson B, Lübbert M, Jung M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics. 2010;1:117–36. https://doi.org/10.1007/s13148-010-0012-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lubbert M, Kuendgen A. Combining DNA methyltransferase and histone deacetylase inhibition to treat acute myeloid leukemia/myelodysplastic syndrome: achievements and challenges. Cancer. 2015;121:498–501. https://doi.org/10.1002/cncr.29083.

    Article  PubMed  CAS  Google Scholar 

  195. Kirschbaum M, Gojo I, Goldberg SL, Bredeson C, Kujawski LA, Yang A, Marks P, Frankel P, Sun X, Tosolini A, Eid JE, Lubiniecki GM, Issa J-P. A phase 1 clinical trial of vorinostat in combination with decitabine in patients with acute myeloid leukaemia or myelodysplastic syndrome. Br J Haematol. 2014;167:185–93. https://doi.org/10.1111/bjh.13016.

    Article  CAS  PubMed  Google Scholar 

  196. Strati P, Kantarjian H, Ravandi F, Nazha A, Borthakur G, Daver N, Kadia T, Estrov Z, Garcia-Manero G, Konopleva M, Rajkhowa T, Durand M, Andreeff M, Levis M, Cortes J. Phase I/II trial of the combination of midostaurin (PKC412) and 5-azacytidine for patients with acute myeloid leukemia and myelodysplastic syndrome. Am J Hematol. 2015;90:276–81. https://doi.org/10.1002/ajh.23924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Groschel S, Sanders MA, Hoogenboezem R, de Wit E, Bouwman BAM, Erpelinck C, van der Velden VHJ, Havermans M, Avellino R, van Lom K, Rombouts EJ, van Duin M, Dohner K, Beverloo HB, Bradner JE, Dohner H, Lowenberg B, Valk PJM, Bindels EMJ, de Laat W, Delwel R. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 2014;157:369–81. https://doi.org/10.1016/j.cell.2014.02.019.

    Article  CAS  PubMed  Google Scholar 

  198. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M, Taylor MJ, Johns C, Chicas A, Mulloy JC, Kogan SC, Brown P, Valent P, Bradner JE, Lowe SW, Vakoc CR. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478:524–8. https://doi.org/10.1038/nature10334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Herrmann H, Blatt K, Shi J, Gleixner KV, Cerny-Reiterer S, Mullauer L, Vakoc CR, Sperr WR, Horny H-P, Bradner JE, Zuber J, Valent P. Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia AML. Oncotarget. 2012;3:1588–99. 10.18632/oncotarget.733.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Gasiorowski RE, Clark GJ, Bradstock K, Hart DNJ. Antibody therapy for acute myeloid leukaemia. Br J Haematol. 2014;164:481–95. https://doi.org/10.1111/bjh.12691.

    Article  CAS  PubMed  Google Scholar 

  201. Petersdorf SH, Kopecky KJ, Slovak M, Willman C, Nevill T, Brandwein J, Larson RA, Erba HP, Stiff PJ, Stuart RK, Walter RB, Tallman MS, Stenke L, Appelbaum FR. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121:4854–60. https://doi.org/10.1182/blood-2013-01-466706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Amadori S, Suciu S, Selleslag D, Aversa F, Gaidano G, Musso M, Annino L, Venditti A, Voso MT, Mazzone C, Magro D, De Fabritiis P, Muus P, Alimena G, Mancini M, Hagemeijer A, Paoloni F, Vignetti M, Fazi P, Meert L, Ramadan SM, Willemze R, de Witte T, Baron F. Gemtuzumab ozogamicin versus best supportive care in older patients with newly diagnosed acute myeloid leukemia unsuitable for intensive chemotherapy: results of the randomized phase III EORTC-GIMEMA AML-19 trial. J Clin Oncol. 2016;34:972–9. https://doi.org/10.1200/JCO.2015.64.0060.

    Article  PubMed  CAS  Google Scholar 

  203. Gill S, Tasian SK, Ruella M, Shestova O, Li Y, Porter DL, Carroll M, Danet-Desnoyers G, Scholler J, Grupp SA, June CH, Kalos M. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood. 2014;123:2343–54. https://doi.org/10.1182/blood-2013-09-529537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kenderian SS, Ruella M, Shestova O, Klichinsky M, Aikawa V, Morrissette JJD, Scholler J, Song D, Porter DL, Carroll M, June CH, Gill S. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia. 2015;29:1637–47. https://doi.org/10.1038/leu.2015.52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Ross JF, Wang H, Behm FG, Mathew P, Wu M, Booth R, Ratnam M. Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer. 1999;85:348–57.

    Article  CAS  PubMed  Google Scholar 

  206. Wang H, Zheng X, Behm FG, Ratnam M. Differentiation-independent retinoid induction of folate receptor type beta, a potential tumor target in myeloid leukemia. Blood. 2000;96:3529–36.

    CAS  PubMed  Google Scholar 

  207. Lynn RC, Poussin M, Kalota A, Feng Y, Low PS, Dimitrov DS, Powell DJJ. Targeting of folate receptor beta on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells. Blood. 2015;125:3466–76. https://doi.org/10.1182/blood-2014-11-612721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Martinelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martinelli, C. (2018). Signaling Landscape of AML: The Story So Far. In: Fayyaz, S., Farooqi, A. (eds) Recent Trends in Cancer Biology: Spotlight on Signaling Cascades and microRNAs. Springer, Cham. https://doi.org/10.1007/978-3-319-71553-7_13

Download citation

Publish with us

Policies and ethics