Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 2106 Accesses

Abstract

This chapter describes examples of reference algorithms for the efficient and robust computation of topological abstractions, for the purpose of data abstraction in scientific visualization. First, we present a combinatorial technique for the topological simplification of scalar data, given some user-defined or application-driven constraints. The algorithm slightly perturbs the input data such that only a constrained sub-set of critical points remains. Thus, this technique can serve in practice as a pre-processing step that significantly speeds up the subsequent computation of topological abstractions. Second, we present an efficient algorithm for the computation of Reeb graphs of PL scalar fields defined on PL 3-manifolds in \(\mathbb {R}^3\). This approach described the first practical algorithm for volumetric meshes, with virtually linear scalability in practice and up to three orders of magnitude speedups with regard to previous work. Such an algorithm enabled for the first time the generalization of contour-tree based interactive techniques to non simply-connected domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.K. Agarwal, H. Edelsbrunner, J. Harer, Y. Wang, Extreme elevation on a 2-manifold, in Proceeding of ACM Symposium on Computational Geometry (2004)

    Google Scholar 

  2. D. Attali, M. Glisse, S. Hornus, F. Lazarus, D. Morozov, Persistence-sensitive simplification of functions on surfaces in linear time, in TopoInVis Workshop (2009)

    Google Scholar 

  3. D. Attali, U. Bauer, O. Devillers, M. Glisse, A. Lieutier, Homological reconstruction and simplification in R3, in Proceeding of ACM Symposium on Computational Geometry (2013)

    Google Scholar 

  4. U. Bauer, C. Lange, M. Wardetzky, Optimal topological simplification of discrete functions on surfaces. Discret. Comput. Geom. 47, 347–377 (2012)

    Google Scholar 

  5. P.-T. Bremer, H. Edelsbrunner, B. Hamann, V. Pascucci, A topological hierarchy for functions on triangulated surfaces. IEEE Trans. Vis. Comput. Graph. 10, 385–396 (2004)

    Google Scholar 

  6. H. Carr, J. Snoeyink, U. Axen, Computing contour trees in all dimensions, in Proceeding of Symposium on Discrete Algorithms (2000), pp. 918–926

    Google Scholar 

  7. K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, V. Pascucci, Loops in Reeb graphs of 2-manifolds, in Proceedings of ACM Symposium on Computational Geometry (2003), pp. 344–350

    Google Scholar 

  8. T. Dey, S. Guha, Computing homology groups of simplicial complexes in \(\mathbb {R}^3\). J. ACM 45, 266–287 (1998)

    Google Scholar 

  9. H. Doraiswamy, V. Natarajan, Efficient output sensitive construction of Reeb graphs, in International Symposium on Algorithms and Computation (2008)

    Google Scholar 

  10. H. Doraiswamy, V. Natarajan, Computing Reeb graphs as a union of contour trees. IEEE Trans. Vis. Comput. Graph. 19, 249–262 (2013)

    Google Scholar 

  11. H. Edelsbrunner, E. Mucke, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms. ACM Trans. Graph. 9, 66–104 (1990)

    Article  MATH  Google Scholar 

  12. H. Edelsbrunner, D. Morozov, V. Pascucci, Persistence-sensitive simplification of functions on 2-manifolds, in Proceedings of ACM Symposium on Computational Geometry (2006), pp. 127–134

    Google Scholar 

  13. J. Milnor, Morse Theory (Princeton University Press, Princeton, 1963)

    MATH  Google Scholar 

  14. S. Parsa, A deterministic O(m log m) time algorithm for the Reeb graph, in Proceedings of ACM Symposium on Computational Geometry (2012)

    MATH  Google Scholar 

  15. V. Pascucci, G. Scorzelli, P.T. Bremer, A. Mascarenhas, Robust on-line computation of Reeb graphs: simplicity and speed. ACM Trans. Graph. 26, 58 (2007)

    Article  Google Scholar 

  16. G. Patane, M. Spagnuolo, B. Falcidieno, Reeb graph computation based on a minimal contouring, in Proceedings of IEEE Shape Modeling International (2008)

    Google Scholar 

  17. J. Tierny, V. Pascucci, Generalized topological simplification of scalar fields on surfaces. IEEE Trans. Vis. Comput. Graph. 18, 2005–2013 (2012)

    Article  Google Scholar 

  18. J. Tierny, A. Gyulassy, E. Simon, V. Pascucci, Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees. IEEE Trans. Vis. Comput. Graph. 15, 1177–1184 (2009)

    Article  Google Scholar 

  19. J. Tierny, D. Guenther, V. Pascucci, Optimal general simplification of scalar fields on surfaces, in Topological and Statistical Methods for Complex Data (Springer, Berlin, 2014)

    Google Scholar 

  20. C. Wall, Surgery on Compact Manifolds (American Mathematical Society, Oxford, 1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tierny, J. (2017). Abstraction. In: Topological Data Analysis for Scientific Visualization. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-71507-0_3

Download citation

Publish with us

Policies and ethics