Skip to main content

Stochastic Time Synchronization Models Based on Agreement Algorithms

  • Conference paper
  • First Online:
Analytical and Computational Methods in Probability Theory (ACMPT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10684))

Abstract

We propose deterministic and stochastic models of clock synchronization in nodes of large distributed network locally coupled with a reliable external exact time server.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control, 5th edn. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  2. Cybenko, G.: Dynamic load balancing for distributed memory multiprocessors. J. Parallel Distrib. Comput. 2, 279–301 (1989)

    Article  Google Scholar 

  3. DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)

    Article  MATH  Google Scholar 

  4. Estrada, E., Vargas-Estrada, E.: How peer pressure shapes consensus, leadership, and innovations in social groups. Sci. Rep. 3, 2905 (2013)

    Article  Google Scholar 

  5. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York, NY, USA (1986)

    Google Scholar 

  6. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lin, F., Fardad, M., Jovanovic, M.R.: Algorithms for leader selection in stochastically forced consensus networks. IEEE Trans. Autom. Control 59(7), 1789–1802 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Olshevsky, A., Tsitsiklis, J.N.: Convergence speed in distributed consensus and averaging. SIAM Rev. 53(4), 747–772 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Patt-Shamir, B., Rajsbaum, S.: A theory of clock synchronization (extended abstract). In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, STOC 1994, pp. 810–819. ACM, New York (1994)

    Google Scholar 

  11. Seneta, E.: Non-negative Matrices and Markov Chains. Springer, Heidelberg (2006). https://doi.org/10.1007/0-387-32792-4

    MATH  Google Scholar 

  12. Simeone, O., Spagnolini, U., Bar-Ness, Y., Strogatz, S.H.: Distributed synchronization in wireless networks. IEEE Sig. Process. Mag. 25(5), 81–97 (2008)

    Article  Google Scholar 

  13. Varga, R.S.: Matrix Iterative Analysis. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05156-2

    MATH  Google Scholar 

  14. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  MathSciNet  Google Scholar 

  15. Xiao, L., Boyd, S.P., Kim, S.J.: Distributed average consensus with least-mean-square deviation. J. Parallel Distrib. Comput. 67(1), 33–46 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larisa Manita .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Different Types of Convergence

Let us recall some facts about convergence of random variables and vectors. The sequence of random vectors \(\varvec{\xi }_{n}\) with values in is said to be convergent in distribution (in law) to a random vector \(\varvec{\xi }\) as \(n\rightarrow \infty \) if

$$\begin{aligned} \mathsf {E}\,f(\varvec{\xi }_{n})\rightarrow \mathsf {E}\,f(\varvec{\xi }) \end{aligned}$$
(35)

for all bounded continuous functions . In such case we will write \(\varvec{\xi }_{n}{\mathop {\rightarrow }\limits ^{d}}\varvec{\xi }\).

We will use notation \(\left\langle \varvec{y},\varvec{z}\right\rangle :=\sum _{j=1}^{N}y_{j}z_{j}\) for the usual scalar product of two nonrandom vectors and \(\Vert \varvec{y}-\varvec{z}\Vert \) for the Euclidian distance between \(\varvec{y}\) and \(\varvec{z}\). Let \(L_{2}(d\mathsf {P})\) be a Euclidian space of random -valued vectors with the scalar product

$$\begin{aligned} \left\langle \varvec{\xi },\varvec{\eta }\right\rangle _{L_{2}(d\mathsf {P})}:=\mathsf {E}\,\left\langle \varvec{\xi },\varvec{\eta }\right\rangle =\mathsf {E}\,\sum _{j=1}^{N}\xi _{j}\eta _{j}. \end{aligned}$$

Thus the Euclidian norm in \(L_{2}(d\mathsf {P})\) is given by \(\left\| \varvec{\xi }\right\| _{L_{2}(d\mathsf {P})}^{2}=\sum _{j=1}^{N}\mathsf {E}\,\left| \xi _{j}\right| ^{2}\).

The sequence of random vectors \(\varvec{\xi }_{n}\) with values in is said to be convergent to \(\varvec{\xi }\) in \(L_{2}(d\mathsf {P})\) (mean square convergent) if \(\mathsf {E}\,\Vert \varvec{\xi }_{n}-\varvec{\xi }\Vert ^{2}\rightarrow 0\) as \(n\rightarrow \infty \). Recall that independence of two zero mean vectors \(\varvec{\xi }\) and \(\varvec{\eta }\) implies their orthogonality: \(\left\langle \varvec{\xi },\varvec{\eta }\right\rangle _{L_{2}(d\mathsf {P})}=0\).

It is well know that the mean square convergence is stronger than the convergence in distribution, i.e., \(\varvec{\xi }_{n}{\mathop {\longrightarrow }\limits ^{L_{2}(d\mathsf {P})}}\varvec{\xi }\quad \Longrightarrow \quad \varvec{\xi }_{n}{\mathop {\rightarrow }\limits ^{d}}\varvec{\xi }\).

Lemma 4

Let \(\varvec{\xi }_{n}\) and \(\varvec{\eta }_{n}\) be two sequences of -valued random vectors. Assume that

  1. (i)

    \(\left\| \varvec{\xi _{n}}-\varvec{\eta }_{n}\right\| _{L_{2}(d\mathsf {P})}\rightarrow 0\) as \(n\rightarrow \infty \),

  2. (ii)

    \(\varvec{\eta }_{n}{\mathop {\rightarrow }\limits ^{d}}\varvec{\eta }\) where is some random vector.

Then \(\varvec{\xi _{n}}{\mathop {\rightarrow }\limits ^{d}}\varvec{\eta }\) as \(n\rightarrow \infty \).

The proof of this lemma is rather straightforward. It is sufficient to check (35) only for bounded uniformly continuous functions. To do this one can use the Chebyshev inequality. We omit details.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manita, L., Manita, A. (2017). Stochastic Time Synchronization Models Based on Agreement Algorithms. In: Rykov, V., Singpurwalla, N., Zubkov, A. (eds) Analytical and Computational Methods in Probability Theory. ACMPT 2017. Lecture Notes in Computer Science(), vol 10684. Springer, Cham. https://doi.org/10.1007/978-3-319-71504-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71504-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71503-2

  • Online ISBN: 978-3-319-71504-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics