Discrete Gamma Approximation in Retrial Queue MMPP/M/1 Based on Moments Calculation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10684)


In the paper, the retrial queueing system of MMPP/M/1 type is considered. The process of the number of calls in the system is analyzed. The method for the approximate calculation of the first and the second moments is suggested. We propose the method of the discrete gamma approximation based on obtained moments. The numerical analysis of the obtained results for different values of the system parameters is provided. Comparison of the distributions obtained by simulation and the approximate ones is presented.


Retrial queueing system MMPP Discrete gamma distribution Calculation of moments 



The publication was financially supported by the Ministry of Education and Science of the Russian Federation (the Agreement number 02.a03.21.0008).


  1. 1.
    Aguir, S., Karaesmen, F., Askin, O.Z., Chauvet, F.: The impact of retrials on call center performance. OR Spektrum 26, 353–376 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aissani, A.: Heavy loading approximation of the unreliable queue with repeated orders, pp. 97–102 (1992)Google Scholar
  3. 3.
    Anisimov, V.: Asymptotic analysis of highly reliable retrial systems with finite capacity. In: Queues, Flows, Systems, Networks: Proceedings of the International Conference Modern Mathematical Methods of Investigating the Telecommunication Networks, pp. 7–12. Minsk (1999)Google Scholar
  4. 4.
    Anisimov, V.: Asymptotic analysis of reliability for switching systems in light and heavy traffic conditions, pp. 119–133. Birkhäuser Boston, Boston (2000)Google Scholar
  5. 5.
    Artalejo, J., Falin, G.: Standard and retrial queueing systems: a comparative analysis. Revista Matematica Complutense 15, 101–129 (2002)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Artalejo, J., Gómez-Corral, A.: Retrial Queueing Systems. A Computational Approach. Springer, Stockholm (2008). CrossRefzbMATHGoogle Scholar
  7. 7.
    Artalejo, J., Gómez-Corral, A., Neuts, M.: Analysis of multiserver queues with constant retrial rate. Eur. J. Oper. Res. 135, 569–581 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cohen, J.: Basic problems of telephone traffic and the influence of repeated calls. Philips Telecommun. Rev. 18(2), 49–100 (1957)Google Scholar
  9. 9.
    Diamond, J., Alfa, A.: Matrix analytical methods for \(M/PH/1\) retrial queues. Stochast. Models 11, 447–470 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Diamond, J., Alfa, A.: Approximation method for \(M/PH/1\) retrial queues with phase type inter-retrial times. Eur. J. Oper. Res. 113, 620–631 (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Dudin, A., Klimenok, V.: Queueing system \(BMAP/G/1\) with repeated calls. Math. Comput. Modell. 30(3–4), 115–128 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Elldin, A., Lind, G.: Elementary Telephone Traffic Theory. Ericsson Public Telecommunications, Stockholm (1971)Google Scholar
  13. 13.
    Falin, G.: \(M/G/1\) queue with repeated calls in heavy traffic. Mosc. Univ. Math. Bull. 6, 48–50 (1980)zbMATHGoogle Scholar
  14. 14.
    Falin, G., Templeton, J.: Retrial Queues. Chapman & Hall, London (1997)CrossRefzbMATHGoogle Scholar
  15. 15.
    Fedorova, E.: Quasi-geometric and gamma approximation for retrial queueing systems. In: Dudin, A., Nazarov, A., Yakupov, R., Gortsev, A. (eds.) ITMM 2014. CCIS, vol. 487, pp. 123–136. Springer, Cham (2014). Google Scholar
  16. 16.
    Gómez-Corral, A.: A bibliographical guide to the analysis of retrial queues through matrix analytic techniques. Ann. Oper. Res. 141, 163–191 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gosztony, G.: Repeated call attempts and their effect on traffic engineering. Bell Syst. Tech. J. 2, 16–26 (1976)Google Scholar
  18. 18.
    Kim, C., Mushko, V., Dudin, A.: Computation of the steady state distribution for multi-server retrial queues with phase type service process. Ann. Oper. Res. 201(1), 307–323 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kuznetsov, D., Nazarov, A.: Analysis of non-Markovian models of communication networks with adaptive protocols of multiple random access. Autom. Remote Control 5, 124–146 (2001)zbMATHGoogle Scholar
  20. 20.
    Lopez-Herrero, M.J.: Distribution of the number of customers served in an \(M/G/1\) retrial queue. J. Appl. Probab. 39(2), 407–412 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lucantoni, D.: New results on the single server queue with a batch Markovian arrival process. Stochast. Models 7, 1–46 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Moiseev, A., Demin, A., Dorofeev, V., Sorokin, V.: Discrete-event approach to simulation of queueing networks. Key Eng. Mater. 685, 939–942 (2016)CrossRefGoogle Scholar
  23. 23.
    Moiseev, A., Nazarov, A.: Queueing network \(MAP-(GI/\infty )^K\) with high-rate arrivals. Eur. J. Oper. Res. 254, 161–168 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Moiseeva, E., Nazarov, A.: Asymptotic analysis of RQ-systems \(M/M/1\) on heavy load condition. In: Proceedings of the IV International Conference Problems of Cybernetics and Informatics, pp. 64–166. Baku, Azerbaijan (2012)Google Scholar
  25. 25.
    Nazarov, A., Chernikova, Y.: Gaussian approximation of distribution of states of the retrial queueing system with r-persistent exclusion of alternative customers. In: Dudin, A., Nazarov, A., Yakupov, R. (eds.) ITMM 2015. CCIS, vol. 564, pp. 200–208. Springer, Cham (2015). CrossRefGoogle Scholar
  26. 26.
    Nazarov, A., Tsoj, S.: Common approach to studies of Markov models for data transmission networks controlled by the static random multiple access protocols. Autom. Control Comput. Sci. 4, 73–85 (2004)Google Scholar
  27. 27.
    Neuts, M.: Versatile Markovian point process. J. Appl. Probab. 16(4), 764–779 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Neuts, M., Rao, B.: Numerical investigation of a multiserver retrial model. Queueing Syst. 7(2), 169–189 (1990)CrossRefzbMATHGoogle Scholar
  29. 29.
    Pankratova, E., Moiseeva, S.: Queueing system \(MAP/M/\infty \) with \(n\) types of customers. In: Dudin, A., Nazarov, A., Yakupov, R., Gortsev, A. (eds.) ITMM 2014. CCIS, vol. 487, pp. 356–366. Springer, Cham (2014). Google Scholar
  30. 30.
    Pourbabai, B.: Asymptotic analysis of \(G/G/K\) queueing-loss system with retrials and heterogeneous servers. Int. J. Syst. Sci. 19, 1047–1052 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ridder, A.: Fast simulation of retrial queues. In: Third Workshop on Rare Event Simulation and Related Combinatorial Optimization Problems, Pisa, Italy, pp. 1–5 (2000)Google Scholar
  32. 32.
    Roszik, J., Sztrik, J., Kim, C.: Retrial queues in the performance modelling of cellular mobile networks using MOSEL. Int. J. Simul. 6, 38–47 (2005)Google Scholar
  33. 33.
    Sakurai, H., Phung-Duc, T.: Scaling limits for single server retrial queues with two-way communication. Ann. Oper. Res. 247(1), 229–256 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Stepanov, S.: Asymptotic analysis of models with repeated calls in case of extreme load. Prob. Inf. Transm. 29(3), 248–267 (1993)Google Scholar
  35. 35.
    Wilkinson, R.: Theories for toll traffic engineering in the USA. Bell Syst. Tech. J. 35(2), 421–507 (1956)CrossRefGoogle Scholar
  36. 36.
    Yang, T., Posner, M., Templeton, J., Li, H.: An approximation method for the \(M/G/1\) retrial queue with general retrial times. Eur. J. Oper. Res. 76, 552–562 (1994)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Tomsk State UniversityTomskRussian Federation
  2. 2.Peoples’ Friendship University of RussiaMoscowRussian Federation

Personalised recommendations