Similarity Based Interactive Private Information Retrieval
Abstract
Private Information Retrieval (PIR) schemes address users’ privacy concerns while querying public databases. Two major advancements that are needed for designing practical privacy preserving applications are: (i) constant communication complexity and (ii) private retrieval of matching documents. In this paper, we propose a new family of interactive schemes namely SIMPIR, that allow participating servers to interact with each other. Our methods are similarity based (i.e. the results could contain false positives but do not contain any false negatives). Importantly our approach has constant communication complexity agnostic of the size of database which is major improvement from known schemes. We achieve these results by slightly relaxing the traditional requirements of PIR schemes.
Keywords
Private information retrieval Encryption switching protocols Homomorphic encryptionNotes
Acknowledgments
We would like to thank Cisco Systems for supporting this work.
References
- 1.https://www.torproject.org/ (2016)
- 2.Term frequency - inverse document frequency (2016). https://en.wikipedia.org/wiki/Tf-idf
- 3.Aguilar-Melchor, C., Barrier, J., Fousse, L., Killijian, M.O.: Xpire: Private information retrieval for everyone. Technical report, Cryptology ePrint Archive, Report 2014/1025 (2014)Google Scholar
- 4.Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private information retrieval: PIR with preprocessing. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 55–73. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_4 CrossRefGoogle Scholar
- 5.Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference 1979, vol. 48, pp. 313–317 (1979)Google Scholar
- 6.Bogdanov, D.: Foundations and properties of Shamir’s secret sharing scheme. University of Tartu, Institute of Computer Science, 1 May 2007Google Scholar
- 7.Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29 CrossRefGoogle Scholar
- 8.Chang, Y.-C.: Single database private information retrieval with logarithmic communication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 50–61. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9_5 CrossRefGoogle Scholar
- 9.Chor, B., Gilboa, N.: Computationally private information retrieval. In: Proceedings of the twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 304–313. ACM (1997)Google Scholar
- 10.Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Citeseer (1997)Google Scholar
- 11.Couteau, G., Peters, T., Pointcheval, D.: Encryption switching protocols. Technical report, Cryptology ePrint Archive, Report 2015/990 (2015). http://eprint.iacr.org
- 12.Couteau, G., Peters, T., Pointcheval, D.: Secure distributed computation on private inputs. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015. LNCS, vol. 9482, pp. 14–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30303-1_2 CrossRefGoogle Scholar
- 13.Cramer, R., Damgård, I.: Multiparty computation, an introduction. In: Catalano, D., Cramer, R., Di Crescenzo, G., Darmgård, I., Pointcheval, D., Takagi, T. (eds.) Contemporary Cryptology, pp. 41–87. Springer, Heidelberg (2005). https://doi.org/10.1007/3-7643-7394-6_2 CrossRefGoogle Scholar
- 14.Devet, C., Goldberg, I.: The best of both worlds: combining information-theoretic and computational PIR for communication efficiency. In: De Cristofaro, E., Murdoch, S.J. (eds.) PETS 2014. LNCS, vol. 8555, pp. 63–82. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08506-7_4 Google Scholar
- 15.Dong, C., Chen, L.: A fast single server private information retrieval protocol with low communication cost. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 380–399. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9_22 Google Scholar
- 16.Gavin, G., Minier, M.: Oblivious multi-variate polynomial evaluation. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 430–442. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10628-6_28 CrossRefGoogle Scholar
- 17.Goldberg, I.: Improving the robustness of private information retrieval. In: IEEE Symposium on Security and Privacy, SP 2007, pp. 131–148. IEEE (2007)Google Scholar
- 18.Henry, R., Olumofin, F., Goldberg, I.: Practical PIR for electronic commerce. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, pp. 677–690. ACM (2011)Google Scholar
- 19.Kikuchi, H.: Private revocation test using oblivious membership evaluation protocol. In: 3rd Annual PKI R&D Workshop. Citeseer (2004)Google Scholar
- 20.Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-private information retrieval. In: FOCS, p. 364. IEEE (1997)Google Scholar
- 21.Lim, H.W., Tople, S., Saxena, P., Chang, E.C.: Faster secure arithmetic computation using switchable homomorphic encryption. IACR Cryptology ePrint Archive 2014/539 (2014)Google Scholar
- 22.Mittal, P., Olumofin, F.G., Troncoso, C., Borisov, N., Goldberg, I.: PIR-Tor: scalable anonymous communication using private information retrieval. In: USENIX Security Symposium (2011)Google Scholar
- 23.Olumofin, F., Goldberg, I.: Privacy-preserving queries over relational databases. In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 75–92. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14527-8_5 CrossRefGoogle Scholar
- 24.Olumofin, F., Goldberg, I.: Revisiting the computational practicality of private information retrieval. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 158–172. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27576-0_13 CrossRefGoogle Scholar
- 25.Ostrovsky, R., Skeith, W.E.: A survey of single-database private information retrieval: techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_26 CrossRefGoogle Scholar
- 26.Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16 Google Scholar
- 27.Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
- 28.Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull. 24(4), 35–43 (2001)Google Scholar