Similarity Based Interactive Private Information Retrieval

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10662)

Abstract

Private Information Retrieval (PIR) schemes address users’ privacy concerns while querying public databases. Two major advancements that are needed for designing practical privacy preserving applications are: (i) constant communication complexity and (ii) private retrieval of matching documents. In this paper, we propose a new family of interactive schemes namely SIMPIR, that allow participating servers to interact with each other. Our methods are similarity based (i.e. the results could contain false positives but do not contain any false negatives). Importantly our approach has constant communication complexity agnostic of the size of database which is major improvement from known schemes. We achieve these results by slightly relaxing the traditional requirements of PIR schemes.

Keywords

Private information retrieval Encryption switching protocols Homomorphic encryption 

Notes

Acknowledgments

We would like to thank Cisco Systems for supporting this work.

References

  1. 1.
  2. 2.
    Term frequency - inverse document frequency (2016). https://en.wikipedia.org/wiki/Tf-idf
  3. 3.
    Aguilar-Melchor, C., Barrier, J., Fousse, L., Killijian, M.O.: Xpire: Private information retrieval for everyone. Technical report, Cryptology ePrint Archive, Report 2014/1025 (2014)Google Scholar
  4. 4.
    Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private information retrieval: PIR with preprocessing. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 55–73. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44598-6_4 CrossRefGoogle Scholar
  5. 5.
    Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference 1979, vol. 48, pp. 313–317 (1979)Google Scholar
  6. 6.
    Bogdanov, D.: Foundations and properties of Shamir’s secret sharing scheme. University of Tartu, Institute of Computer Science, 1 May 2007Google Scholar
  7. 7.
    Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_29 CrossRefGoogle Scholar
  8. 8.
    Chang, Y.-C.: Single database private information retrieval with logarithmic communication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 50–61. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27800-9_5 CrossRefGoogle Scholar
  9. 9.
    Chor, B., Gilboa, N.: Computationally private information retrieval. In: Proceedings of the twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 304–313. ACM (1997)Google Scholar
  10. 10.
    Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Citeseer (1997)Google Scholar
  11. 11.
    Couteau, G., Peters, T., Pointcheval, D.: Encryption switching protocols. Technical report, Cryptology ePrint Archive, Report 2015/990 (2015). http://eprint.iacr.org
  12. 12.
    Couteau, G., Peters, T., Pointcheval, D.: Secure distributed computation on private inputs. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015. LNCS, vol. 9482, pp. 14–26. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30303-1_2 CrossRefGoogle Scholar
  13. 13.
    Cramer, R., Damgård, I.: Multiparty computation, an introduction. In: Catalano, D., Cramer, R., Di Crescenzo, G., Darmgård, I., Pointcheval, D., Takagi, T. (eds.) Contemporary Cryptology, pp. 41–87. Springer, Heidelberg (2005).  https://doi.org/10.1007/3-7643-7394-6_2 CrossRefGoogle Scholar
  14. 14.
    Devet, C., Goldberg, I.: The best of both worlds: combining information-theoretic and computational PIR for communication efficiency. In: De Cristofaro, E., Murdoch, S.J. (eds.) PETS 2014. LNCS, vol. 8555, pp. 63–82. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08506-7_4 Google Scholar
  15. 15.
    Dong, C., Chen, L.: A fast single server private information retrieval protocol with low communication cost. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 380–399. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11203-9_22 Google Scholar
  16. 16.
    Gavin, G., Minier, M.: Oblivious multi-variate polynomial evaluation. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 430–442. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10628-6_28 CrossRefGoogle Scholar
  17. 17.
    Goldberg, I.: Improving the robustness of private information retrieval. In: IEEE Symposium on Security and Privacy, SP 2007, pp. 131–148. IEEE (2007)Google Scholar
  18. 18.
    Henry, R., Olumofin, F., Goldberg, I.: Practical PIR for electronic commerce. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, pp. 677–690. ACM (2011)Google Scholar
  19. 19.
    Kikuchi, H.: Private revocation test using oblivious membership evaluation protocol. In: 3rd Annual PKI R&D Workshop. Citeseer (2004)Google Scholar
  20. 20.
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-private information retrieval. In: FOCS, p. 364. IEEE (1997)Google Scholar
  21. 21.
    Lim, H.W., Tople, S., Saxena, P., Chang, E.C.: Faster secure arithmetic computation using switchable homomorphic encryption. IACR Cryptology ePrint Archive 2014/539 (2014)Google Scholar
  22. 22.
    Mittal, P., Olumofin, F.G., Troncoso, C., Borisov, N., Goldberg, I.: PIR-Tor: scalable anonymous communication using private information retrieval. In: USENIX Security Symposium (2011)Google Scholar
  23. 23.
    Olumofin, F., Goldberg, I.: Privacy-preserving queries over relational databases. In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 75–92. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14527-8_5 CrossRefGoogle Scholar
  24. 24.
    Olumofin, F., Goldberg, I.: Revisiting the computational practicality of private information retrieval. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 158–172. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27576-0_13 CrossRefGoogle Scholar
  25. 25.
    Ostrovsky, R., Skeith, W.E.: A survey of single-database private information retrieval: techniques and applications. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 393–411. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71677-8_26 CrossRefGoogle Scholar
  26. 26.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_16 Google Scholar
  27. 27.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull. 24(4), 35–43 (2001)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Cisco Systems Inc.BangaloreIndia
  2. 2.International Institute of Information Technology, BangaloreBangaloreIndia

Personalised recommendations