Efficient Implementation of Private License Plate Matching Protocols

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10662)

Abstract

License plate matching is an important facilitator for new-age services like toll billing, calculation of road taxes and law enforcement that demand both effectiveness and efficiency. The license plate itself might not be of much importance but the information linked to it may reveal a lot about the owner. Therefore, in order to maintain the privacy of information and to ensure security of the ways in which the information is used, the search/match operations are performed in the encrypted domain. We practically analyze the performance of three existing protocols for private license plate matching based on Paillier’s additively homomorphic technique. We explore various performance improvement techniques for Paillier encryption and decryption to speedup the overall matching process. In addition, we attempt to parallelise the entire procedure by separately running encryption-decryption in a multi-threaded manner, thereby speeding up the process. Finally, we perform comparative analysis of experimental results of the four implementation techniques (along with parallelisation).

Keywords

Secure license plate matching Paillier’s encryption Performance analysis Encryption-decryption Parallelisation 

References

  1. 1.
    Sunil, A.B., Erkiny, Z., Veugenyz, T.: Secure matching of Dutch car license plates. In: 24th European Signal Processing Conference (EUSIPCO), pp. 2116–2120 (2016)Google Scholar
  2. 2.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_16 Google Scholar
  3. 3.
    Jost, C., Lam, H., Maximov, A., Smeets, B.: Encryption performance improvements of the Paillier cryptosystem. IACR Cryptol. ePrint Arch. 2015, 864 (2015)Google Scholar
  4. 4.
    Sunil, A.B.: Secure License Plate Matching using Homomorphic Encryption. Masters thesis, Vrije Universiteit Amsterdam (2015)Google Scholar
  5. 5.
    Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009)Google Scholar
  6. 6.
    ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Min, Z., Yang, G., Shi, J.: A privacy-preserving parallel and homomorphic encryption scheme. Open Phys. 15, 135–142 (2017)CrossRefGoogle Scholar
  8. 8.
    Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. Eur. Trans. Telecommun. 8(5), 481–490 (1997)CrossRefGoogle Scholar
  9. 9.
    Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03168-7_14 CrossRefGoogle Scholar
  10. 10.
    Jakobsen, T.P., Makkes, M.X., Nielsen, J.D.: Efficient implementation of the Orlandi protocol. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 255–272. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13708-2_16 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Harshul Vaishnav
    • 1
  • Smriti Sharma
    • 1
  • Anish Mathuria
    • 1
  1. 1.Dhirubhai Ambani Institute of Information and Communication TechnologyGandhinagarIndia

Personalised recommendations