Short Integrated PKE+PEKS in Standard Model

  • Vishal SaraswatEmail author
  • Rajeev Anand Sahu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10662)


At SeCrypt 2015, Buccafurri et al. [BLSS15] presented an integrated public-key encryption (PKE) and public-key encryption with keyword search (PEKS) scheme (PKE+PEKS) whose security relies on the Symmetric eXternal Diffie-Hellman (SXDH) assumption but they did not provide a security proof. We present a construction of PKE+PEKS and prove its security in the standard model under the SXDH assumption. We prove that our scheme is both IND-PKE-CCA secure, that is, it provides message confidentiality against an adaptive chosen ciphertext adversary, and IND-PEKS-CCA secure, that is, it provides keyword privacy against an adaptive chosen ciphertext adversary. Ours is the first secure PKE+PEKS construction to use asymmetric pairings which enable an extremely fast implementation useful for practical applications. Our scheme has much shorter ciphertexts than the scheme in [BLSS15] and all other publicly known PKE+PEKS schemes. Finally, we compare our scheme with other proposed PEKS and integrated PKE+PEKS schemes and provide a relative analysis of various parameters including assumption, security and efficiency.


PKE+PEKS Searchable encryption Asymmetric pairings (type 3) Provable security Standard model SXDH 



We thank the anonymous reviewers for the constructive and helpful comments. We thank Francesco Buccafurri and Gianluca Lax for the useful discussions. We are thankful to Olivier Markowitch for the support.


  1. [ABC+05]
    Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  2. [ABN10]
    Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  3. [BDOP04]
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  4. [BDPR98]
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998). Google Scholar
  5. [BF01]
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  6. [BLSS15]
    Buccafurri, F., Lax, G., Sahu, R.A., Saraswat, V.: Practical and secure integrated PKE+PEKS with keyword privacy. In: SECRYPT, pp. 448–453. SciTePress (2015)Google Scholar
  7. [BSS06]
    Baek, J., Safavi-Naini, R., Susilo, W.: On the integration of public key data encryption and public key encryption with keyword search. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 217–232. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  8. [BSS08]
    Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword search revisited. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5072, pp. 1249–1259. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  9. [BW06]
    Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  10. [CLL+12]
    Chen, J., Lim, H.W., Ling, S., Wang, H., Wee, H.: Shorter IBE and signatures via asymmetric pairings. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 122–140. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  11. [CZLZ14]
    Chen, Y., Zhang, J., Lin, D., Zhang, Z.: Generic constructions of integrated PKE and PEKS. In: Designs, Codes and Cryptography, pp. 1–34 (2014)Google Scholar
  12. [DK05]
    Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  13. [DS07]
    Di Crescenzo, G., Saraswat, V.: Public key encryption with searchable keywords based on Jacobi symbols. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 282–296. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  14. [FP07]
    Fuhr, T., Paillier, P.: Decryptable searchable encryption. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 228–236. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  15. [GM84]
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [GPS08]
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008). Applications of Algebra to CryptographyMathSciNetCrossRefzbMATHGoogle Scholar
  17. [INHJ11]
    Ibraimi, L., Nikova, S., Hartel, P., Jonker, W.: Public-key encryption with delegated search. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 532–549. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  18. [JR13]
    Jutla, C.S., Roy, A.: Shorter Quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. [Kur02]
    Kurosawa, K.: Multi-recipient public-key encryption with shortened ciphertext. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer, Heidelberg (2002). CrossRefGoogle Scholar
  20. [PSST11]
    Paterson, K.G., Schuldt, J.C.N., Stam, M., Thomson, S.: On the joint security of encryption and signature, revisited. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 161–178. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  21. [SR14]
    Strizhov, M., Ray, I.: Multi-keyword Similarity Search over Encrypted Cloud Data. In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El Kalam, A., Sans, T. (eds.) SEC 2014. IAICT, vol. 428, pp. 52–65. Springer, Heidelberg (2014). CrossRefGoogle Scholar
  22. [SVEG10]
    Shmueli, E., Vaisenberg, R., Elovici, Y., Glezer, C.: Database encryption: an overview of contemporary challenges and design considerations. ACM SIGMOD Rec. 38(3), 29–34 (2010)CrossRefGoogle Scholar
  23. [Wat09]
    Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  24. [ZI07]
    Zhang, R., Imai, H.: Generic combination of public key encryption with keyword search and public key encryption. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 159–174. Springer, Heidelberg (2007). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.R.C. Bose Centre for Cryptology and SecurityIndian Statistical InstituteKolkataIndia
  2. 2.Département d’InformatiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations