Skip to main content

Strength and Conditioning in Developmental Tennis Players

Abstract

In the last few years, it has been a significant change in the area of strength and conditioning, with a significant increase in terms of volume and intensity, especially in training programs focused in young athletes [1]. This coupled with the increase in sport-specific year-round training has led to a discussion around the possible negative effects provoked by the amount of training during the development process of these young athletes, at a time when they are experiencing a wide range of physical, physiological, and psychological changes as a result of growth and maturation [2, 3]. Young athletes can be considered as a “special” population [4]. Regarding young tennis players, they are routinely exposed to sport-specific training and extensive competitive schedules which can result in inadequate overall preparation, leading to suboptimal recovery, and a higher risk of injury [5]. In this regard, young athletes cannot merely be considered adults in miniature [1], and the physiological adaptations caused by training in children and adolescents are significantly different from that of mature adults [6]. Although competing in sport and strength and conditioning programs have many benefits, the training and competition schedules and program design should reflect the many differences in the young athlete compared to a fully developed adult athlete.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-71498-1_38
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-71498-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)

References

  1. Malina RM, Bouchard C, Bar-Or O. Growth, maturation, and physical activity: human kinetics. Champaign, IL: Human Kinetics; 2004.

    Google Scholar 

  2. Wiersma LD. Risks and benefits of youth sport specialization: perspectives and recommendations. Pediatr Exerc Sci. 2000;12(1):13–22.

    CrossRef  Google Scholar 

  3. Lloyd RS, Oliver JL. The youth physical development model: a new approach to long-term athletic development. Strength Cond J. 2012;34(3):61–72.

    CrossRef  Google Scholar 

  4. Malina RM. Early sport specialization: roots, effectiveness, risks. Curr Sports Med Rep. 2010;9(6):364–71.

    PubMed  CrossRef  Google Scholar 

  5. Lloyd RS, Cronin JB, Faigenbaum AD, et al. National Strength and Conditioning Association position statement on long-term athletic development. J Strength Cond Res. 2016;30(6):1491–509. https://doi.org/10.1519/JSC.0000000000001387.

    CrossRef  PubMed  Google Scholar 

  6. Naughton G, Farpour-Lambert NJ, Carlson J, et al. Physiological issues surrounding the performance of adolescent athletes. Sports Med. 2000;30(5):309–25.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Capranica L, Millard-Stafford ML. Youth sport specialization: how to manage competition and training? Int J Sports Physiol Perform. 2011;6(4):572–9.

    PubMed  CrossRef  Google Scholar 

  8. Beunen GP, Malina RM, Freitas DI, et al. Cross-validation of the Beunen-Malina method to predict adult height. Ann Hum Biol. 2010;37(4):593–7. https://doi.org/10.3109/03014460903393865.

    CrossRef  PubMed  Google Scholar 

  9. Birrer R, Levine R, Gallippi L, et al. The correlation of performance variables in preadolescent tennis players. J Sports Med Phys Fitness. 1986;26(2):137.

    CAS  PubMed  Google Scholar 

  10. Roetert EP, Garrett GE, Brown SW, et al. Performance profiles of nationally ranked junior tennis players. J Strength Cond Res. 1992;6(4):225–31.

    Google Scholar 

  11. Roetert P, Ellenbecker TS. Complete conditioning for tennis. Champaign, IL: Human Kinetics; 2007.

    Google Scholar 

  12. Mujika I, Vaeyens R, Matthys SP, et al. The relative age effect in a professional football club setting. J Sports Sci. 2009;27(11):1153–8.

    PubMed  CrossRef  Google Scholar 

  13. Delorme N, Boiché J, Raspaud M. Relative age effect in elite sports: methodological bias or real discrimination? Eur J Sport Sci. 2010;10(2):91–6.

    CrossRef  Google Scholar 

  14. Musch J, Grondin S. Unequal competition as an impediment to personal development: a review of the relative age effect in sport. Dev Rev. 2001;21(2):147–67.

    CrossRef  Google Scholar 

  15. Ulbricht A, Fernandez-Fernandez J, Mendez-Villanueva A, et al. The relative age effect and physical fitness characteristics in german male tennis players. J Sports Sci Med. 2015;14(3):634.

    PubMed  PubMed Central  Google Scholar 

  16. Sherar LB, Baxter-Jones AD, Faulkner RA, et al. Do physical maturity and birth date predict talent in male youth ice hockey players? J Sports Sci. 2007;25(8):879–86.

    PubMed  CrossRef  Google Scholar 

  17. Baxter-Jones AD, Sherar LB. Growth and maturation. In: Armstrong N, editor. Paediatric exercise physiology, advances in sport and exercise science series. Churchill Livingston: Elsevier; 2007. p. 1–26.

    Google Scholar 

  18. Balyi I, Way R, Higgs C. Long-term athlete development. Champaign, IL: Human Kinetics; 2013.

    Google Scholar 

  19. Mirwald RL, Baxter-Jones AD, Bailey DA, et al. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689–94.

    PubMed  Google Scholar 

  20. Ulbricht A, Fernandez-Fernandez J, Ferrauti A. Conception for fitness testing and individualized training programs in the German Tennis Federation. Sports Orthopaed Traumatol. 2013;29(3):180–92.

    CrossRef  Google Scholar 

  21. Myer GD, Jayanthi N, Difiori JP, et al. Sport specialization, part I: does early sports specialization increase negative outcomes and reduce the opportunity for success in young athletes? Sports Health. 2015;7(5):437–42. https://doi.org/10.1177/1941738115598747.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Reid M, Crespo M, Lay B, et al. Skill acquisition in tennis: research and current practice. J Sci Med Sport. 2007;10(1):1–10.

    PubMed  CrossRef  Google Scholar 

  23. Murphy A, Duffield R, Kellett A, et al. The effect of pre-departure training loads on post-tour physical capacities in high-performance junior tennis players. Int J Sports Physiol Perform. 2015;10(8):986–93.

    PubMed  CrossRef  Google Scholar 

  24. Kovacs M, Mundie E, Eng D, et al. How did the top 100 professional tennis players (ATP) succeed: an analysis of ranking milestones. J Med Sci Tennis. 2015;20:50–7.

    Google Scholar 

  25. Cotorro A, Philippon M, Briggs K, et al. Hip screening in elite youth tennis players. Br J Sports Med. 2014;48(7):582.

    CrossRef  Google Scholar 

  26. Myer GD, Jayanthi N, DiFiori JP, et al. Sports specialization, Part II: alternative solutions to early sport specialization in youth athletes. Sports Health. 2016;8(1):65–73. https://doi.org/10.1177/1941738115614811.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  27. LaPrade RF, Agel J, Baker J, et al. AOSSM early sport specialization consensus statement. Orthopaed J Sports Med. 2016;4(4):2325967116644241. https://doi.org/10.1177/2325967116644241.

    CrossRef  Google Scholar 

  28. Feeley BT, Agel J, LaPrade RF. When is it too early for single sport specialization? Am J Sports Med. 2016;44(1):234–41. https://doi.org/10.1177/0363546515576899.

    CrossRef  PubMed  Google Scholar 

  29. Ford P, De Ste Croix M, Lloyd R, et al. The long-term athlete development model: physiological evidence and application. J Sports Sci. 2011;29(4):389–402. https://doi.org/10.1080/02640414.2010.536849.

    CrossRef  PubMed  Google Scholar 

  30. Lloyd RS, Oliver JL, Faigenbaum AD, et al. Long-term athletic development – part 1: a pathway for all youth. J Strength Cond Res. 2015;29(5):1439–50. https://doi.org/10.1519/JSC.0000000000000756.

    CrossRef  PubMed  Google Scholar 

  31. Baquet G, Van Praagh E, Berthoin S. Endurance training and aerobic fitness in young people. Sports Med. 2003;33(15):1127–43.

    PubMed  CrossRef  Google Scholar 

  32. Rumpf MC, Cronin JB, Pinder SD, et al. Effect of different training methods on running sprint times in male youth. Pediatr Exerc Sci. 2012;24(2):170–86.

    PubMed  CrossRef  Google Scholar 

  33. Lloyd RS, Meyers RW, Oliver JL. The natural development and trainability of plyometric ability during childhood. Strength Cond J. 2011;33(2):23–32.

    CrossRef  Google Scholar 

  34. Faigenbaum AD, Lloyd RS, MacDonald J, et al. Citius, altius, fortius: beneficial effects of resistance training for young athletes: narrative review. Br J Sports Med. 2016;50(1):3–7. https://doi.org/10.1136/bjsports-2015-094621.

    CrossRef  PubMed  Google Scholar 

  35. Faigenbaum AD, Lloyd RS, Myer GD. Youth resistance training: past practices, new perspectives, and future directions. Pediatr Exerc Sci. 2013;25(4):591–604.

    PubMed  CrossRef  Google Scholar 

  36. Jaakkola T, Yli-Piipari S, Huotari P, et al. Fundamental movement skills and physical fitness as predictors of physical activity: a 6-year follow-up study. Scand J Med Sci Sports. 2016;26(1):74–81. https://doi.org/10.1111/sms.12407.

    CAS  CrossRef  PubMed  Google Scholar 

  37. Bryant ES, Duncan MJ, Birch SL. Fundamental movement skills and weight status in British primary school children. Eur J Sport Sci. 2014;14(7):730–6. https://doi.org/10.1080/17461391.2013.870232.

    CrossRef  PubMed  Google Scholar 

  38. Lubans DR, Morgan PJ, Cliff DP, et al. Fundamental movement skills in children and adolescents: review of associated health benefits. Sports Med. 2010;40(12):1019–35. https://doi.org/10.2165/11536850-000000000-00000.

    CrossRef  PubMed  Google Scholar 

  39. Lloyd RS, Oliver JL, Faigenbaum AD, et al. Long-term athletic development, part 2: barriers to success and potential solutions. J Strength Cond Res. 2015;29(5):1451–64. https://doi.org/10.1519/01.JSC.0000465424.75389.56.

    CrossRef  PubMed  Google Scholar 

  40. Myer GD, Lloyd RS, Brent JL, et al. How young is “too young” to start training? ACSMs Health Fit J. 2013;17(5):14–23. https://doi.org/10.1249/FIT.0b013e3182a06c59.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Fernandez-Fernandez J, Sanz-Rivas D, Sáenz d-VE, et al. The effects of 8-week plyometric training on physical performance in young tennis players. Pediatr Exerc Sci. 28(1):2015, 77–86.

    PubMed  CrossRef  Google Scholar 

  42. Faigenbaum AD, McFarland JE, Keiper FB, et al. Effects of a short-term plyometric and resistance training program on fitness performance in boys age 12 to 15 years. J Sports Sci Med. 2007;6(4):519.

    PubMed  PubMed Central  Google Scholar 

  43. Lloyd RS, Read P, Oliver JL, et al. Considerations for the development of agility during childhood and adolescence. Strength Cond J. 2013;35(3):2–11.

    CrossRef  Google Scholar 

  44. Mandelbaum BR, Silvers HJ, Watanabe DS, et al. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes 2-year follow-up. Am J Sports Med. 2005;33(7):1003–10.

    PubMed  CrossRef  Google Scholar 

  45. Behringer M, von Heede A, Yue Z, et al. Effects of resistance training in children and adolescents: a meta-analysis. Pediatrics. 2010;26(5):e1199–210.

    CrossRef  Google Scholar 

  46. Michailidis Y, Fatouros IG, Primpa E, et al. Plyometrics’ trainability in preadolescent soccer athletes. J Strength Cond Res. 2013;27(1):38–49. https://doi.org/10.1519/JSC.0b013e3182541ec6.

    CrossRef  PubMed  Google Scholar 

  47. Fernandez-Fernandez J, Ellenbecker T. Effects of a 6-week junior tennis conditioning program on service velocity. J Sports Sci Med. 2013;12(2):232.

    PubMed  PubMed Central  Google Scholar 

  48. Lloyd RS, Oliver JL. Strength and conditioning for young athletes: science and application. Abingdon: Routledge; 2013.

    CrossRef  Google Scholar 

  49. Salonikidis K, Zafeiridis A. The effects of plyometric, tennis-drills, and combined training on reaction, lateral and linear speed, power, and strength in novice tennis players. J Strength Cond Res. 2008;22(1):182–91. https://doi.org/10.1519/JSC.0b013e31815f57ad.

    CrossRef  PubMed  Google Scholar 

  50. Kovacs MS. Strength and conditioning for the young tennis player. The young tennis player. New York, NY: Springer; 2016. p. 55–86.

    CrossRef  Google Scholar 

  51. Ellenbecker TS, Pluim B, Vivier S, et al. Common injuries in tennis players: exercises to address muscular imbalances and reduce injury risk. Strength Cond J. 2009;31(4):50–8.

    CrossRef  Google Scholar 

  52. Ellenbecker TS, Cools A. Rehabilitation of shoulder impingement syndrome and rotator cuff injuries: an evidence-based review. Br J Sports Med. 2010;44(5):319–27.

    CrossRef  PubMed  Google Scholar 

  53. Hjelm N, Werner S, Renstrom P. Injury risk factors in junior tennis players: a prospective 2-year study. Scand J Med Sci Sports. 2012;22(1):40–8.

    CAS  CrossRef  PubMed  Google Scholar 

  54. Pluim B, Loeffen F, Clarsen B, et al. A one-season prospective study of injuries and illness in elite junior tennis. Scand J Med Sci Sports. 2015;26(5):564–71.

    PubMed  CrossRef  Google Scholar 

  55. Kovacs MS, Ellenbecker TS, Kibler WB, et al. Injury trends in american competitive junior tennis players. J Med Sci Tennis. 2014;19(1):19–24.

    Google Scholar 

  56. Sell K, Hainline B, Yorio M, et al. Injury trend analysis from the US Open Tennis Championships between 1994 and 2009. Br J Sports Med. 2014;48(7):546–51.

    CrossRef  PubMed  Google Scholar 

  57. Barengo NC, Meneses-Echávez JF, Ramírez-Vélez R, et al. The impact of the FIFA 11+ training program on injury prevention in football players: a systematic review. Int J Environ Res Public Health. 2014;11(11):11986–2000.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  58. Bizzini M, Impellizzeri FM, Dvorak J, et al. Physiological and performance responses to the “FIFA 11+” (part 1): is it an appropriate warm-up? J Sports Sci. 2013;31(13):1481–90. https://doi.org/10.1080/02640414.2013.802922.

    CrossRef  PubMed  Google Scholar 

  59. Lloyd RS, Faigenbaum AD, Stone MH, et al. Position statement on youth resistance training: the 2014 International Consensus. Br J Sports Med. 2014;48(7):498–505. https://doi.org/10.1136/bjsports-2013-092952.

    CrossRef  PubMed  Google Scholar 

  60. Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L, et al. Effect of movement velocity during resistance training on neuromuscular performance. Int J Sports Med. 2014;35(11):916–24.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Legaz-Arrese A, Reverter-Masia J, Munguia-Izquierdo D, et al. An analysis of resistance training based on the maintenance of mechanical power. J Sports Med Phys Fitness. 2007;47(4):427–36.

    CAS  PubMed  Google Scholar 

  62. Lloyd RS, Oliver JL, Hughes MG, et al. The effects of 4-weeks of plyometric training on reactive strength index and leg stiffness in male youths. J Strength Cond Res. 2012;26(10):2812–9. https://doi.org/10.1519/JSC.0b013e318242d2ec.

    CrossRef  PubMed  Google Scholar 

  63. Kotzamanidis C. Effect of plyometric training on running performance and vertical jumping in prepubertal boys. J Strength Cond Res. 2006;20(2):441–5.

    PubMed  Google Scholar 

  64. Saez-Saez de Villarreal E, Requena B, Newton RU. Does plyometric training improve strength performance? A meta-analysis. J Sci Med Sport. 2010;13(5):513–22. https://doi.org/10.1016/j.jsams.2009.08.005.

    CrossRef  PubMed  Google Scholar 

  65. Johnson BA, Salzberg CL, Stevenson DA. A systematic review: plyometric training programs for young children. J Strength Cond Res. 2011;25(9):2623–33. https://doi.org/10.1519/JSC.0b013e318204caa0.

    CrossRef  PubMed  Google Scholar 

  66. Ramirez-Campillo R, Andrade DC, Izquierdo M. Effects of plyometric training volume and training surface on explosive strength. J Strength Cond Res. 2013;27(10):2714–22. https://doi.org/10.1519/JSC.0b013e318280c9e9.

    CrossRef  PubMed  Google Scholar 

  67. Ramirez-Campillo R, Meylan C, Alvarez C, et al. Effects of in-season low-volume high-intensity plyometric training on explosive actions and endurance of young soccer players. J Strength Cond Res. 2014;28(5):1335–42. https://doi.org/10.1519/jsc.0000000000000284.

    CrossRef  PubMed  Google Scholar 

  68. Ramírez-Campillo R, Gallardo F, Henriquez-Olguín C, et al. Effect of vertical, horizontal and combined plyometric training on explosive, balance and endurance performance of young soccer players. J Strength Cond Res 2015 29(7):1784-1795.

    Google Scholar 

  69. Byrd R, Pierce K, Rielly L, et al. Strength and conditioning (michael stone sub-editor: young weightlifters’ performance across time). Sports Biomech. 2003;2(1):133–40.

    PubMed  CrossRef  Google Scholar 

  70. Chaouachi A, Hammami R, Kaabi S, et al. Olympic weightlifting and plyometric training with children provides similar or greater performance improvements than traditional resistance training. J Strength Cond Res. 2014;28(6):1483–96.

    PubMed  CrossRef  Google Scholar 

  71. Channell BT, Barfield J. Effect of olympic and traditional resistance training on vertical jump improvement in high school boys. J Strength Cond Res. 2008;22(5):1522–7.

    PubMed  CrossRef  Google Scholar 

  72. Lloyd RS, Oliver JL, Meyers RW, et al. Long-term athletic development and its application to youth weightlifting. Strength Cond J. 2012;34(4):55–66.

    Google Scholar 

  73. Pluim BM, Staal J, Windler G, et al. Tennis injuries: occurrence, aetiology, and prevention. Br J Sports Med. 2006;40(5):415–23.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  74. Harbili E, Alptekin A. Comparative kinematic analysis of the snatch lifts in elite male adolescent weightlifters. J Sports Sci Medicine. 2014;13(2):417.

    Google Scholar 

  75. Kovacs MS. A comparison of work/rest intervals in men’s professional tennis. Med Sci Tennis. 2004;9(3):10–1.

    Google Scholar 

  76. Kovacs MS. Applied physiology of tennis performance. Br J Sports Med. 2006;40(5):381–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  77. Kovacs M, Chandler WB, Chandler TJ. Tennis training: enhancing on-court performance. Vista, CA: Racquet Tech Publishing; 2007.

    Google Scholar 

  78. Ferrauti A, Maier P, Weber K. Schnelligkeitstraining. Leistung, Athletik, Gesundheit. In: Handbuch für Tennistraining. Meyer and Meyer Verlag, Aachen, Germany; 2014. p. 229–258.

    Google Scholar 

  79. Pieper S, Exler T, Weber K. Running speed loads on clay and hard courts in world class tennis. Med Sci Tennis. 2007;12(2):14–7.

    Google Scholar 

  80. Weber K, Pieper S, Exler T. Characteristics and significance of running speed at the Australian Open 2006 for training and injury prevention. Med Sci Tennis. 2007;12(1):14–7.

    Google Scholar 

  81. Young WB, McDowell MH, Scarlett BJ. Specificity of sprint and agility training methods. J Strength Cond Res. 2001;15(3):315–9.

    CAS  PubMed  Google Scholar 

  82. Wojtys EM, Huston LJ, Taylor PD, et al. Neuromuscular adaptations in isokinetic, isotonic, and agility training programs. Am J Sports Med. 1996;24(2):187–92.

    CAS  PubMed  CrossRef  Google Scholar 

  83. Kovacs MS. Movement for tennis: the importance of lateral training. Strength Cond J. 2009;31(4):77–85.

    CrossRef  Google Scholar 

  84. Bragg RW (2001) The lateral reaction step in tennis footwork. XIX international symposium on biomechanics in sports, San Francisco; 2001.

    Google Scholar 

  85. Kraan GA, van Veen J, Snijders CJ, et al. Starting from standing; why step backwards. J Biomech. 2001;34:211–5.

    CAS  PubMed  CrossRef  Google Scholar 

  86. Kovacs M. Plyometric, speed and agility exercise prescription. In: Chandler TJ, Brown LE, editors. Conditioning for strength and human performance. 2nd ed. Philadelphia, PA: Lippincott, Williams & Wilkins; 2012. p. 383–420.

    Google Scholar 

  87. Brown ME, Mayhew JL, Boleach LW. Effect of plyometric training on vertical jump performance in high school basketball players. J Sports Med Phys Fit. 1986;26:1–4.

    CAS  Google Scholar 

  88. Fatouros IG, Jamurtas AZ, Leontsini D, et al. Evaluation of plyometric exercise training, weight training, and their combination on vertical jumping performance and leg strength. J Strength Cond Res. 2000;14:470–6.

    Google Scholar 

  89. Luebbers PE, Potteiger JA, Hulver MW, et al. Effects of plyometric training and recovery on vertical jump performance and anaerobic power. J Strength Cond Res. 2003;17:704–9.

    PubMed  Google Scholar 

  90. Wilson GJ, Murphy AJ, Giorgi A. Weight and plyometric training: effects on eccentric and concentric force production. Can J Appl Physiol. 1996;21:301–15.

    CAS  PubMed  CrossRef  Google Scholar 

  91. Ashby BM, Heegaard JH. Role of arm motion in the standing long jump. J Biomech. 2002;35:1631–7.

    PubMed  CrossRef  Google Scholar 

  92. Adams K, O'Shea J, O'Shea K, et al. The effect of six weeks of squat, plyometric, and squat-plyometric training on power production. J Appl Sports Sci Res. 1992;6:36–41.

    CAS  Google Scholar 

  93. Bobbert MF, Van Soest AJ. Effects of muscle strengthening on vertical jump height: a simulation study. Med Sci Sports Exerc. 1994;26:1012–20.

    CAS  PubMed  CrossRef  Google Scholar 

  94. Kovacs MS, Roetert EP, Ellenbecker TS. Efficient deceleration: the forgotten factor in tennis-specific training. Strength Cond J. 2008;30(6):58–69.

    CrossRef  Google Scholar 

  95. Drabik J. Children & sports training: how your future champions should exercise to be healthy, fit, and happy. Stadion: Island Pond, VT; 1996.

    Google Scholar 

  96. Verstegen M, Marcello B. Agility and coordination. In: Foran B, editor. High performance sports conditioning. Champaign, IL: Human Kinetics; 2001.

    Google Scholar 

  97. Little T, Williams AG. Specificity of acceleration, maximal speed and agility in professional soccer players. J Strength Cond Res. 2005;19(1):76–8.

    PubMed  Google Scholar 

  98. Ellis L, Gastin P, Lawrence S, et al. Protocols for the physiological assessment of team sports players. In: Gore CJ, editor. Physiological tests for elite athletes. Champaign, IL: Human Kinetics; 2000.

    Google Scholar 

  99. Neptune RR, Wright IC, van der Bogert AJ. Muscle coordination and function during cutting movements. Med Sci Sports Exerc. 1999;31:294–302.

    CAS  PubMed  CrossRef  Google Scholar 

  100. Schmidt RA, Lee TD. Motor control and learning: a behavioral emphasis. 3rd ed. Champaign, IL: Human Kinetics; 1999.

    Google Scholar 

  101. Galton F. On instruments for (1) testing perception of differences of tint and for (2) determining reaction time. J Anthropol Institute. 1899;19:27–9.

    Google Scholar 

  102. Brebner JT, Welford AT. Introduction and historical background sketch. In: Welford AT, editor. Reaction times. New York, NY: Academic; 1980. p. 1–23.

    Google Scholar 

  103. Gambetta V, Winckler G. Sport specific speed: the 3S system. Gambetta Sports Training Systems: Sarasota, FL; 2001.

    Google Scholar 

  104. Mero A, Komi PV. Reaction time and electromyographic activity during a sprint start. Eur J Appl Physiol. 1990;61:73–80.

    CAS  CrossRef  Google Scholar 

  105. Mero A, Komi PV, Gregor RJ. Biomechanics of sprint running. Sports Med. 1992;13(6):376–92.

    CAS  PubMed  CrossRef  Google Scholar 

  106. Chow JW, Carlton LG, Chae WS, et al. Movement characteristics of the tennis volley. Med Sci Sports Exerc. 1999;31(6):855–63.

    CAS  PubMed  CrossRef  Google Scholar 

  107. McNeal JR, Sands WA. Stretching for performance enhancement. Curr Sports Med Rep. 2006;5(3):141–6.

    PubMed  CrossRef  Google Scholar 

  108. Moreno-Pérez V, Moreside J, Barbado D, et al. Comparison of shoulder rotation range of motion in professional tennis players with and without history of shoulder pain. Man Ther. 2015;20(2):313–8.

    PubMed  CrossRef  Google Scholar 

  109. Saccol MF, Gracitelli GC, da Silva RT, et al. Shoulder functional ratio in elite junior tennis players. Phys Ther Sport. 2010;11(1):8–11.

    CrossRef  PubMed  Google Scholar 

  110. Struyf F, Nijs J, Baeyens JP, et al. Scapular positioning and movement in unimpaired shoulders, shoulder impingement syndrome, and glenohumeral instability. Scand J Med Sci Sports. 2011;21(3):352–8.

    CAS  PubMed  CrossRef  Google Scholar 

  111. Ellenbecker TS, Wilk K. Sport therapy for the shoulder: evaluation, rehabilitation, and return to sport. Champaign, IL: Human Kinetics; 2016.

    Google Scholar 

  112. Ellenbecker TS, Ellenbecker GA, Roetert EP, et al. Descriptive profile of hip rotation range of motion in elite tennis players and professional baseball pitchers. Am J Sports Med. 2007;35(8):1371–6.

    PubMed  CrossRef  Google Scholar 

  113. Young SW, Dakic J, Stroia K, et al. Hip range of motion and association with injury in female professional tennis players. Am J Sports Med. 2014;42(11):2654–8.

    CrossRef  PubMed  Google Scholar 

  114. Moreno-Pérez V, Ayala F, Fernandez-Fernandez J, et al. Descriptive profile of hip range of motion in elite tennis players. Phys Ther Sport. 2016;19:43–8.

    PubMed  CrossRef  Google Scholar 

  115. Harshbarger ND, Eppelheimer BL, McLeod TCV, et al. The effectiveness of shoulder stretching and joint mobilizations on posterior shoulder tightness. J Sport Rehabil. 2013;22(4):313–9.

    PubMed  CrossRef  Google Scholar 

  116. Cheatham SW, Kolber MJ, Cain M, et al. The effects of self-myofascial release using a foam roll or roller massager on joint range of motion, muscle recovery, and performance: a systematic review. Int J Sports Phys Ther. 2015;10(6):827–38.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Fernandez-Fernandez, J., Kovacs, M. (2018). Strength and Conditioning in Developmental Tennis Players. In: Di Giacomo, G., Ellenbecker, T., Kibler, W. (eds) Tennis Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-71498-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71498-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71497-4

  • Online ISBN: 978-3-319-71498-1

  • eBook Packages: MedicineMedicine (R0)