Skip to main content

Biomechanics of Groundstrokes and Volleys

  • Chapter
  • First Online:

Abstract

Groundstrokes are the predominant strokes in tennis, outnumbering serves by a factor of almost 2. While the volume of groundstrokes is typically double for men compared with those of women, the similarity in velocity generation for forehands and backhands, irrespective of sex, means that a biomechanical base to groundstroke production is critical in attaining optimal performance and staying injury-free. Mechanical considerations of the forehand and one- and two-handed backhands are integrally linked with the development of racket velocity (the kinetic chain), trajectory and orientation for impact, over a variety of tactical situations. These factors will form the basis of this chapter. The mechanics associated with stroke variability, footwork, stance and influence of grip, as they relate to stroke production, will also be discussed. A Clinician’s Corner is included for each section to relate mechanics back to the theme of the book, that of Tennis Medicine. The volley, although a much less prevalent stroke than the forehand and backhand, represents approximately 3% of the number of groundstrokes hit by professional players. Yet it still plays an important role in tennis tactics and will therefore be treated in a similar manner, albeit in a briefer format.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Campbell A, Straker L, Whiteside D, O’Sullivan P, Elliott B, Reid M. Lumbar mechanics in tennis groundstrokes: Differences in elite adolescent players with and without low back pain. J Appl Biomech. 2016;32:32–9.

    Article  PubMed  Google Scholar 

  2. Reid M, Morgan S, Whiteside D. Matchplay characteristics of Grand Slam tennis: implications for training and conditioning. J Sports Sci. 2016;34(19):1791–8.

    Article  PubMed  Google Scholar 

  3. Cam I, Turhan B, Onag Z. The analysis of the last shots of top-level tennis players in open tennis tournaments. Turk J Sport Exerc. 2013;15(1):54–7.

    Google Scholar 

  4. Landlinger J, Stöggl T, Lindinger S, Wagner H, Müller E. Differences in ball speed and accuracy of tennis groundstrokes between elite and high-performance players. Eur J Sport Sci. 2012;12(4):301–8.

    Article  Google Scholar 

  5. Reid M, Elliott B. The one- and two-handed backhands in tennis. Sports Biomech. 2002;1:47–68.

    Article  PubMed  Google Scholar 

  6. Akutagawa S, Kojima T. Trunk rotation torques through the hip joints during the one- and two-handed backhand strokes. J Sports Sci. 2005;23(8):781–93.

    Article  PubMed  Google Scholar 

  7. Fanchiang H, Finch A, Ariel G. Effects of one and two handed tennis backhands hit with varied power levels on torso rotation. XXXI international symposium on biomechanics in sport, Taiwan; 2013. p. 7–11.

    Google Scholar 

  8. Muhamad T, Rashid A, Razak M, Salamuddin N. A comparative study of backhand strokes in tennis among national tennis players in Malaysia. Proc Soc Behav Sci. 2011;15:3495–9.

    Article  Google Scholar 

  9. Kibler B, Safran M. Tennis Injuries. Med Sport Sci. 2005;48:120–37.

    Article  PubMed  Google Scholar 

  10. Brody H. Bounce of a tennis ball. J Sci Med Sport. 2003;6(1):113–9.

    Article  CAS  PubMed  Google Scholar 

  11. Cross R. Customising a tennis racquet by adding weights. Sports Eng. 2001;4:1–14.

    Article  Google Scholar 

  12. Elliott B, Reid M, Crespo M, editors. Biomechanics of advanced tennis. Valencia, Spain: ITF Ltd.; 2003.

    Google Scholar 

  13. Elliott B, Reid M, Crespo M, editors. Technique development in tennis stroke production. Valencia, Spain: ITF Ltd.; 2009.

    Google Scholar 

  14. Reid M, Elliott B, Crespo M, editors. Tennis science: optimizing performance on the court. London: Ivy Press; 2015.

    Google Scholar 

  15. Davids K, Glazier P, Araújoe D, Bartlett R. Movement systems as dynamical systems: the functional role of variability and its implications for sports medicine. Sports Med. 2003;33(4):245–60.

    Article  PubMed  Google Scholar 

  16. Knudson D. Intra-subject variability of upper extremity kinematics in the tennis forehand drive. Int J Sports Biomech. 1990;6:415–21.

    Article  Google Scholar 

  17. Matava M. Stop sports injuries: overuse injuries [Pamphlet]. Rosemont, IL: American Orthopedic Society for Sports Medicine; 2010.

    Google Scholar 

  18. Hamill J, van Emmerik RE, Heiderscheit BC, Li L. A dynamical systems approach to lower extremity running injuries. Clin Biomech. 1999;14(5):297–308.

    Article  CAS  Google Scholar 

  19. Heiderscheit BC. Variability of Stride Characteristics and Joint Coordination among Individuals. J Appl Biomech. 2002;18:110–21.

    Article  Google Scholar 

  20. James CR, Dufek JS, Bates BT. Effects of injury proneness and task difficulty on joint kinetic variability. Med Sci Sports Exerc. 2000;32(11):1833–44.

    Article  CAS  PubMed  Google Scholar 

  21. Fortenbaugh D, Fleisig G, Andrews J. Baseball pitching biomechanics in relation to injury risk and performance. Sports Health. 2009;1(4):314–20.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Grantham W, Byram I, Meadows M, Ahmad C. The impact of fatigue on the kinematics of collegiate baseball pitchers. Orthop J Sports Med. 2014;2(6):2325967114537032.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lyman S, Fleisig G, Waterbor J, et al. Longitudinal study of elbow and shoulder pain in youth baseball pitchers. Med Sci Sport Exerc. 2001;33(11):1803–10.

    Article  CAS  Google Scholar 

  24. Olsen SJ, Fleisig G, Dun S, Loftice J, Andrews J. Risk factors for shoulder and elbow injuries in adolescent baseball pitchers. Am J Sports Med. 2006;34(6):905–12.

    Article  PubMed  Google Scholar 

  25. Damm L, Low D, Richardson A, Clarke J, Carré M, Dixon S. The effects of surface traction characteristics on frictional demand and kinematics in tennis. Sports Biomech. 2013;12(4):389–402.

    Article  PubMed  Google Scholar 

  26. Carl JR, Gellman RS. Human smooth pursuit: stimulus-dependent responses. J Neurophysiol. 1987;57(5):1446–63.

    Article  CAS  PubMed  Google Scholar 

  27. Avilès C, Benguigui N, Beaudoin E, Godart F. Developing early perception and getting ready for action on the return of serve. ITF Coaching Sport Sci Rev. 2002;28:6–8.

    Google Scholar 

  28. Reid M, Elliott B, Crespo M. Mechanics and learning practices associated with the tennis forehand: a review. J Sports Sci Med. 2013;12(2):225–31.

    PubMed  PubMed Central  Google Scholar 

  29. Triolet C, Benguigui N, Le Runigo C, Williams AM. Quantifying the nature of anticipation in professional tennis. J Sports Sci. 2013;31(8):820–30.

    Article  PubMed  Google Scholar 

  30. Knudson D, Blackwell J. Trunk muscle activation in open and square stance tennis forehands. Int J Sports Med. 2000;21:321–4.

    Article  CAS  PubMed  Google Scholar 

  31. Bahamonde R, Knudson D. Kinetics of the upper extremity in the open and square stance tennis forehand. J Sci Med Sport. 2003;6(1):88–101.

    Article  CAS  PubMed  Google Scholar 

  32. Elliott B, Takahashi K, Noffal G. The influence of grip position on upper limb contributions to racket head velocity in a tennis forehand. J Appl Biomech. 1997;13(2):182–96.

    Article  Google Scholar 

  33. Tagliafico A, Ameri P, Michaud J, Derchi L, Sormani M, Martinoli C. Wrist injuries in nonprofessional tennis players: relationships with different grips. Am J Sports Med. 2009;37(4):760–7.

    Article  PubMed  Google Scholar 

  34. Eng D, Hagler D. A novel analysis of grip variations on the two-handed backhand. ITF Coaching Sport Sci Rev. 2014;62:14–6.

    Google Scholar 

  35. King M, Kentel B, Mitchell S. The effects of ball impact location and grip tightness on the arm, racquet and ball for one-handed tennis backhand groundstroke. J Biomech. 2012;45(6):1048–52.

    Article  PubMed  Google Scholar 

  36. Wei SH, Chiang JY, Shiang TY, Chang HY. Comparison of shock transmission and forearm electromyography between experienced and recreational tennis players during backhand strokes. Clin J Sport Med. 2006;16(2):129–35.

    Article  PubMed  Google Scholar 

  37. Knudson D. Hand forces and impact effectiveness in the tennis forehand. J Hum Mov Stud. 1989;17(1):1–7.

    Google Scholar 

  38. Balius R, Pedret C, Estruch A, Hernández G, Ruiz-Cotorro Á, Mota J. Stress fractures of the metacarpal bones in adolescent tennis players. A case series. Am J Sports Med. 2010;38(6):1215–20.

    Article  PubMed  Google Scholar 

  39. Rossi J, Vigouroux L, Barla C, Berton E. Potential effects of racket grip size on lateral epicondilalgy risks. Scand J Med Sci Sports. 2014;24(6):e462–70.

    Article  CAS  PubMed  Google Scholar 

  40. Wu S, Gross M, Prentice W, Yu B. Comparison of ball-and-racquet impact force between two tennis backhand stroke techniques. J Orthop Sports Phys Ther. 2001;31(5):247–54.

    Article  CAS  PubMed  Google Scholar 

  41. Elliott B, Christmass M. A comparison of the high and low backspin backhand drives in tennis using different grips. J Sports Sci. 1995;13(2):141–51.

    Article  CAS  PubMed  Google Scholar 

  42. Kawasaki S, Imai S, Inaoka H, Masuda T, Okawa A, Shinomiya K. The lower lumbar spine movement and the axial rotational movement of a body during one-handed and double-handed backhand stroke in tennis. Int J Sports Med. 2005;26(8):617–21.

    Article  CAS  PubMed  Google Scholar 

  43. Ellenbecker T, Roetert P. An isokinetic profile of trunk rotation strength in elite tennis players. Med Sci Sports Exerc. 2004;36(11):1959–63.

    Article  PubMed  Google Scholar 

  44. Kibele A, Classen C, Triebfuerst K. Standardized testing of forehand and backhand groundstrokes in tennis through a bird’s eye perspective. ITF Coaching Sport Sci Rev. 2009;49:14–6.

    Google Scholar 

  45. Charbonnier C, Chagué S, Kolo FC, Lädermann A. Shoulder motion during tennis serve: dynamic and radiological evaluation based on motion capture and magnetic resonance imaging. Int J Comput Assist Radiol Surg. 2015;10(8):1289–97.

    Article  PubMed  Google Scholar 

  46. Creveaux T, Dumas R, Hautier C, Macé P, Chèze L, Rogowski I. Joint kinetics to assess the influence of the racket on a tennis player’s shoulder. J Sports Sci Med. 2013;12(2):259–66.

    PubMed  PubMed Central  Google Scholar 

  47. Rogowski I, Creveaux T, Chèze L, Macé P, Dumas R. Effects of the racket polar moment of inertia on dominant upper limb joint moments during tennis serve. PLoS One. 2014;9(8):1–8.

    Article  CAS  Google Scholar 

  48. Iino Y, Kojima T. Torque acting on the pelvis about its superior-inferior axis through the hip joint during a tennis forehand stroke. J Hum Mov Stud. 2001;40:269–90.

    Google Scholar 

  49. Cotorro AR, Philippon M, Briggs K, Boykin R, Dominguez D. Hip screening in elite youth tennis players. Br J Sports Med. 2014;48(7):582.

    Article  Google Scholar 

  50. Philippon MJ, Ho CP, Briggs KK, Stull J, LaPrade RF. Prevalence of increased alpha angles as a measure of cam-type femoro-acetabular impingement in youth ice hockey players. Am J Sports Med. 2013;41(6):1357–62.

    Article  PubMed  Google Scholar 

  51. Siebenrock KA, Kaschka I, Frauchiger L, Werlen S, Schwab JM. Prevalence of cam-type deformity and hip pain in elite ice hockey players before and after the end of growth. Am J Sports Med. 2013;41(10):2308–13.

    Article  PubMed  Google Scholar 

  52. Ireland A, Maden-Wilkinson T, McPhee J, Cooke K, Narici M, Degens H, Rittweger J. Upper limb muscle–bone asymmetries and bone adaptation in elite youth tennis players. Med Sci Sports Exerc. 2013;45(9):1749–58.

    Article  PubMed  Google Scholar 

  53. Bahamonde R. Producing an explosive forehand and backhand. In: Elliott B, Gibson B, Knudson D, editors. Proceedings of the XV11 international symposium on biomechanics. Perth, Australia: Edith Cowan University; 1999.

    Google Scholar 

  54. Stepien A, Bober T, Zawadzki J. The kinematics of trunk and upper extremities in one-handed and two-handed backhand stroke. J Hum Kinet. 2011;30:37–47.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang L, Lin H. Momentum transfer of upper extremity in tennis one-handed backhand drive. J Mech Med Biol. 2005;5(2):231–41.

    Article  Google Scholar 

  56. Seeley M, Funk M, Denning W, Hager R, Hopkins T. Tennis forehand kinematics change as post-impact ball speed is altered. Sports Biomech. 2011;10(4):415–26.

    Article  PubMed  Google Scholar 

  57. Landlinger J, Lindinger S, Stoggl T, Wagner H, Muller E. Key factors and timing patterns in the tennis forehand of different skill levels. J Sports Sci Med. 2010;9(4):643–51.

    PubMed  PubMed Central  Google Scholar 

  58. Rogowski I, Creveaux T, Cheze L, Dumas R. Scapulothoracic kinematics during tennis forehand drive. Sports Biomech. 2014;13(2):166–75.

    Article  PubMed  Google Scholar 

  59. Takahashi K, Elliott B, Noffal G. The role of the upper limb segment rotations in the development of spin in the tennis forehand. Aust J Sci Med Sport. 1996;28(4):106–13.

    CAS  PubMed  Google Scholar 

  60. Huang Y, Tang W, Wang S. Intermuscular coordination analysis of skilled double-handed backhand and single-handed forehand players. XX international society of biomechanics congress, Cleveland, USA; 2005.

    Google Scholar 

  61. Ryu K, McCormick F, Jobe F, Moynes D, Antonell D. An electromyographic analysis of shoulder function in tennis players. Am J Sports Med. 1988;16:481–5.

    Article  CAS  PubMed  Google Scholar 

  62. Elliott B, Marsh T, Overheu P. A biomechanical comparison of the multi-segment and single unit topspin forehand drives in tennis. Int J Sport Biomech. 1989;5(3):350–64.

    Article  Google Scholar 

  63. Wang L, Lin H, Lo K, Hsieh Y, Su F. Comparison of segmental linear and angular momentum transfers in two-handed backhand stroke stances for different skill level tennis players. J Sci Med Sport. 2010;13(4):452–9.

    Article  PubMed  Google Scholar 

  64. Martin C, Bideau B, Bideau N, Nicolas G, Delamarche P, Kulpa R. Energy flow analysis during the tennis serve comparison between injured and non-insured tennis players. Am J Sports Med. 2014;42(11):2751–60.

    Article  PubMed  Google Scholar 

  65. Ray J. The biomechanical analysis of the one-handed and two-handed backhand in tennis. XIII international symposium on biomechanics in sport, Thunder Bay, Canada; 1995. p. 18–22.

    Google Scholar 

  66. Yue Z, Kleinoder H, Mester J. Power and energy analysis of tennis forehand. In: 6th annual congress of the European College of Sports Sciences, Cologne, Germany; 1994. p. 1305.

    Google Scholar 

  67. Blackwell J, Knudson D. Vertical plane margins in the topspin forehand of intermediate tennis players. Med Sport. 2005;9(3):83–6.

    Google Scholar 

  68. Rogowski I, Rouffet D, Lambalot F, Brosseau O, Hautier C. Trunk and upper limb muscle activation during flat and topspin forehand drives in young tennis players. J Appl Biomech. 2011;27:15–21.

    Article  PubMed  Google Scholar 

  69. King M, Glynn J, Mitchell S. Subject-specific computer simulation model for determining elbow loading in one-handed tennis backhand groundstroke. Sports Biomech. 2011;10(4):391–406.

    Article  PubMed  Google Scholar 

  70. Lafont D. Towards a new hitting model in tennis. Int J Perform Anal Sport. 2007;7(3):106–16.

    Article  Google Scholar 

  71. Lafont D. Gaze control during the hitting phase in tennis: a preliminary study. Int J Perform Anal Sport. 2008;8(1):85–100.

    Article  Google Scholar 

  72. Knudson W, Bahamonde R. Trunk and racket kinematics at impact in the open and square stance tennis forehand. Biol Sport. 1999;16(1):3–10.

    Google Scholar 

  73. Elliott B, Marsh A, Overheu P. The topspin backhand drive: a biomechanical analysis. J Hum Mov Stud. 1989;16:1–16.

    Google Scholar 

  74. Nesbit S, Serrano M, Elzinga M. The role of knee positioning and range-of-motion on the closed-stance forehand tennis swing. J Sports Sci Med. 2008;7:114–24.

    PubMed  PubMed Central  Google Scholar 

  75. Kentel B, King M, Mitchell S. Evaluation of a subject-specific, torque-driven computer simulation model of one-handed tennis backhand ground strokes. J Appl Biomech. 2011;27:345–54.

    Article  PubMed  Google Scholar 

  76. Reik S, Chapman A, Milner T. A simulation of muscle force and internal kinematics of extensor carpi radialis brevis during backhand tennis stroke: implications for injury. Clin Biomech. 1999;14:477–83.

    Article  Google Scholar 

  77. Giangarra C, Conroy B, Jobe F, Pink M, Perry J. Electromyographic and cinematographic analysis of elbow function in tennis players using single- and double-handed backhand strokes. Am J Sports Med. 1993;21(3):394–9.

    Article  CAS  PubMed  Google Scholar 

  78. Wilson G, Elliott B, Wood G. The effect of imposing a delay during a stretch-shorten cycle movement. Med Sci Sport Exerc. 1991;23:364–70.

    Article  CAS  Google Scholar 

  79. Walshe A, Wilson G, Ettema G. Stretch-shorten cycle compared with isometric preload contributions to enhanced muscular performance. J Appl Physiol. 1998;84:97–106.

    Article  CAS  PubMed  Google Scholar 

  80. Chow J, Carlton L, Chae W, Lim J, Kuenster A. Muscle activation during the tennis volley. Med Sci Sports Exerc. 1999;31(6):846–54.

    Article  CAS  PubMed  Google Scholar 

  81. Chow J, Carlton L, Woen-Sik C, Jae-Ho S, Young-Tae L, Kuenster A. Movement characteristics of the tennis volley. Med Sci Sports Exerc. 1999;31(6):855–63.

    Article  CAS  PubMed  Google Scholar 

  82. Elliott B, Overheu P, Marsh A. The service line and net volley in tennis: a cinematographic analysis. Aust J Sci Med Sport. 1988;20(2):10–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Elliott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elliott, B., Reid, M., Whiteside, D. (2018). Biomechanics of Groundstrokes and Volleys. In: Di Giacomo, G., Ellenbecker, T., Kibler, W. (eds) Tennis Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-71498-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71498-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71497-4

  • Online ISBN: 978-3-319-71498-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics