Skip to main content

Understanding the Interplay Between Elastin and Collagen During Surgical Procedures and Their Relationship to BEST Lines

  • Chapter
  • First Online:
Book cover Biodynamic Excisional Skin Tension Lines for Cutaneous Surgery
  • 731 Accesses

Abstract

Skin is essentially a composite material that has a fibrous network embedded in a ground substance. The fibrous components are elastin and collagen. Skin’s fibrotic network exhibits a directionality that correlates with its biomechanical function—and this has been often overlooked in surgery. It is therefore important that research looks at skin and scar specimens, both in orthogonal directions within the tissue’s plane, to see how skin properties of elastin and collagen change with injury and subsequent healing, and that is what is attempted in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lanir Y. Skin mechanics. In: Skalak R, Chien S, editors. Handbook of bioengineering. Dallas: McGraw-Hill; 1987. p. 11.1–11.25.

    Google Scholar 

  2. Corr DT, Hart DA. Biomechanics of scar tissue and uninjured skin. Adv Wound Care. 2013;2(2):37–44.

    Article  Google Scholar 

  3. Corr DT, Gallant-Behm CL, Shrive NG, Hart DA. Biomechanical behavior of scar tissue and uninjured skin in a porcine model. Wound Repair Regen. 2009;17:250.

    Article  Google Scholar 

  4. Dunn MG, Silver FH, Swann DA. Mechanical analysis of hypertrophic scar tissue: structural basis for apparent increased rigidity. J Invest Dermatol. 1985;8:9.

    Article  Google Scholar 

  5. Gallant-Behm CL, Reno C, Tsao H, Hart DA. Genetic involvement in skin wound healing and scarring in domestic pigs: assessment of molecular expression patterns in (Yorkshire x Red Duroc) x Yorkshire backcross animals. J Invest Dermatol. 2007;127:233.

    Article  CAS  Google Scholar 

  6. Kumar N, Nayak BS, Kumar P, Prasad KA. Histological study on the distribution of dermal collagen and elastic fibres in different regions of the body. Int J Med Sci. 2012;4(8):171–6.

    Google Scholar 

  7. Conrad K. Die beginnende Schizophrenie. Versuch einer Gestaltanalyse des Wahns [The onset of schizophrenia: an attempt to form an analysis of delusion] (in German). Stuttgart: Georg Thieme; 1958.

    Google Scholar 

  8. Mishara A. Klaus Conrad (1905–1961): delusional mood, psychosis and beginning schizophrenia. Schizophr Bull. 2010;36(1):9–13.

    Article  Google Scholar 

  9. Mendelson B. Chapter 6: Facelift anatomy, SMAS, retaining ligaments and facial spaces. In: Aston SJ, Steinbrech DS, Walden JL, editors. Aesthetic plastic surgery. Philadelphia: Saunders, Elsevier; 2013. p. 80.

    Google Scholar 

  10. Holzapfel GA. Biomechanics of soft tissue. In: Lemaitre J, editor. Handbook of material behavior: nonlinear models and properties. Austria: Graz University of Technology; 2000.

    Google Scholar 

  11. Minns RJ, Soden PD, Jackson DS. The role of the fibrous components and ground substance in the mechanical properties of biological tissues: a preliminary investigation. J Biomech. 1973;6:153–65.

    Article  CAS  Google Scholar 

  12. Topaz M. External tissue expansion and tension relief systems for improved utilisation of the viscoelastic properties of the skin in wound closure. Indian J Plast Surg. 2014;47(3):467–8.

    PubMed  PubMed Central  Google Scholar 

  13. Nout E, Lange JF, Salu NE, et al. Creep behavior of commonly used suture materials in abdominal wall surgery. J Surg Res. 2007;138(1):51–5.

    Article  CAS  Google Scholar 

  14. Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J, Waterhouse A, Wise SG, Weiss AS. Elastin-based materials. Chem Soc Rev. 2010;39(9):3371.

    Article  CAS  Google Scholar 

  15. Chang S-W, Buehler MJ. Molecular biomechanics of collagen molecules. Mater Today. 2014;17:2.

    Article  Google Scholar 

  16. Pittet J-C, Freis O, Vazquez-Duchêne M-D, Périé G, Pauly G. Evaluation of elastin/collagen content in human dermis in-vivo by multiphoton tomography—variation with depth and correlation with aging. Cosmetics. 2014;1:211–21.

    Article  Google Scholar 

  17. Langer K. On the anatomy and physiology of the skin I. The cleavability of the cutis. Br J Plast Surg. 1978;31:3–8.

    Article  Google Scholar 

  18. Waldorf JC, Perdikis G, Terkonda SP. Planning incisions. Oper Tech Gen Surg. 2002;4(3):199–206.

    Article  Google Scholar 

  19. Zahouani H, Djaghloul M, Vargiolu R, Mezghani S, Mansori MEL. Contribution of human skin topography to the characterization of dynamic skin tension during senescence: morpho-mechanical approach. J Phys Conf Ser. 2014;483(1):012012.

    Article  Google Scholar 

  20. Kocher ET. Chirurgische Operationslehre. Jena: Fischer; 1892.

    Google Scholar 

  21. Motegi K. Consideration of the formation and biological significance of hypertrophic scar. J Maxillofac Surg. 1984;12:123–7.

    Article  CAS  Google Scholar 

  22. Reihsner R, Balogh B, Menzel EJ. Two-dimensional elastic properties of human skin in terms of an incremental model at the in vivo configuration. Med Eng Phys. 1995;17(4):304–13.

    Article  CAS  Google Scholar 

  23. Lanir Y, Fung YC. Two-dimensional mechanical properties of rabbit skin. I. Experimental system. J Biomech. 1974;7(1):29–34.

    Article  CAS  Google Scholar 

  24. Lanir Y, Fung YC. Two-dimensional mechanical properties of rabbit skin. II Experimental results. J Biomech. 1974;7(2):171–82.

    Article  CAS  Google Scholar 

  25. Manschot J, Wijn P, Brakkee A. The angular distribution function of elastic fibres as estimated from in vivo measurements. In: Huiskes R, van Campen DH, de Wijn JR, editors. Biomechanics, Vol. I: principles and applications. The Hague: M. Nijhoff; 1982.

    Google Scholar 

  26. Agache PG, Humbert P. Measuring the skin: non-invasive investigations, physiology, normal constants. Berlin: Springer; 2004. p. 435.

    Book  Google Scholar 

  27. Tang J, Zeng F, Savage H, Ho PP, Alfano RR. Fluorescence spectroscopic imaging to detect changes in collagen and elastin following laser tissue welding. J Clin Laser Med Surg. 2000;18(1):3–8.

    CAS  PubMed  Google Scholar 

  28. Mertz J, Moreaux L. Second-harmonic generation by focused excitation of in homogeneously distributed scatterers. Opt Commun. 2001;196:325–30.

    Article  CAS  Google Scholar 

  29. Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat Protoc. 2012;7(4):654–69.

    Article  CAS  Google Scholar 

  30. Cicchi R, Kapsokalyvas D, Troiano M, Campolmi P, Morini C, Massi D, Cannarozzo G, Lotti T, Pavone FS. In vivo non-invasive monitoring of collagen remodelling by two-photon microscopy after micro-ablative fractional laser resurfacing. J Biophotonics. 2014;7(11–12):914–25.

    Article  CAS  Google Scholar 

  31. Jianxin C, et al. Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease. J Biomed Opt. 2011;16(5):051305.

    Article  Google Scholar 

  32. Riemann I, et al. In vivo multiphoton tomography of skin during wound healing and scar formation. Proc SPIE. 2007;6442:644226.

    Article  Google Scholar 

  33. Paul SP, et al. A new skin tensiometer device: computational analyses to understand biodynamic excisional skin tension lines. Sci Rep. 2016;6:30117. https://doi.org/10.1038/srep30117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Paul SP. The epistemology of wrinkles: from geology and anatomy to physiology. Int J Biomed. 2016;6(3):237–9.

    Article  Google Scholar 

  35. Chen J, Zhuo S, Jiang X, et al. Multiphoton microscopy study of the morphological and quantity changes of collagen and elastic fiber components in keloid disease. J Biomed Opt. 2011;16(5):051305–6. https://doi.org/10.1117/1.3569617.

    Article  CAS  PubMed  Google Scholar 

  36. Paul SP. Are incisional and excisional skin tension lines biomechanically different? Understanding the interplay between elastin and collagen during surgical procedures. Int J Biomed. 2017;7(2):111–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paul, S.P. (2018). Understanding the Interplay Between Elastin and Collagen During Surgical Procedures and Their Relationship to BEST Lines. In: Biodynamic Excisional Skin Tension Lines for Cutaneous Surgery . Springer, Cham. https://doi.org/10.1007/978-3-319-71495-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71495-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71494-3

  • Online ISBN: 978-3-319-71495-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics