Advertisement

Towards a Dynamic Isochrone Map: Adding Spatiotemporal Traffic and Population Data

  • Joris van den BergEmail author
  • Barend Köbben
  • Sander van der Drift
  • Luc Wismans
Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

This research combines spatiotemporal traffic and population distribution data in a dynamic isochrone map. To analyze the number of people who have access to a given area or location within a given time, two spatiotemporal variations should ideally be taken into account: (1) variation in travel time, which tend to differ throughout the day as a result of changing traffic conditions, and (2) variation in the location of people, as a result of travel. Typically, accessibility research includes neither one or only variation in travel time. Until recently, we lacked insight in where people were located throughout the day. However, as a result of new data sources like GSM data, the opportunity arises to investigate how variation in traffic conditions and variation in people’s location influences accessibility through space and time. The novelty of this research lies in the combination of spatiotemporal traffic data and spatiotemporal population distribution data presented in a dynamic isochrone web map. A case study is used for the development of this isochrone map. Users can dynamically analyze the areas and people who can reach various home interior stores in the Netherlands within a given time, taking into account traffic conditions and the location of people throughout the day.

Keywords

Isochrone map Dynamic Spatiotemporal Traffic Population distribution GSM Accessibility 

References

  1. Andrienko G, Andrienko N, Bak P, Keim D, Wrobel S (2013) Visual analytics of movement. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-37583-5 CrossRefGoogle Scholar
  2. Andrienko G, Andrienko N, Dykes J, Kraak M, Schumann H (2010) GeoVA (t)—geospatial visual analytics: focus on time. J Location Based Serv 4(3):141–146.  https://doi.org/10.1080/17489725.2010.537283 CrossRefGoogle Scholar
  3. Bauer V, Gamper J, Loperfido R, Profanter S, Putzer S, Timko I (2008) Computing isochrones in multi-modal, schedule-based transport networks. In: Proceedings of the 16th ACM SIGSPATIAL international conference on advances in geographic information systems—GIS’08, 2.  https://doi.org/10.1145/1463434.1463524
  4. Baum M, Buchhold V, Dibbelt J, Wagner D (2015) Fast computation of isochrones in road networks, 1–27.  https://doi.org/10.1007/978-3-319-38851-9
  5. Bonnel P, Hombourger E, Olteneanu-Raimond AM, Smoreda Z (2015) Passive mobile phone dataset to construct origin-destination matrix: potential and limitations. Transp Res Procedia 11:381–398CrossRefGoogle Scholar
  6. Cascetta E, Cartenì A, Montanino M (2016) A behavioral model of accessibility based on the number of available opportunities. J Transp Geogr 51:45–58.  https://doi.org/10.1016/j.jtrangeo.2015.11.002
  7. Doling J (1979) Accessibility and strategic planning. Centre for Urban and Regional Studies, University of Birmingham, BirminghamGoogle Scholar
  8. Efentakis A, Grivas N, Lamprianidis G, Magenschab G, Pfoser D (2013) Isochrones, traffic and DEMOgraphics. In: GIS: Proceedings of the ACM international symposium on advances in geographic information systems, pp 538–541.  https://doi.org/10.1145/2525314.2525325
  9. Google maps (2016) Ikea. https://www.google.nl/maps/search/ikea/@52.246146,4.7822063,8.48z Accessed 16 Dec 2016
  10. Innerebner M, Böhlen M, Gamper J (2013) ISOGA: a system for geographical reachability analysis, pp 180–189Google Scholar
  11. Jariyasunant J, Mai E, Sengupta R (2010) Algorithm for finding optimal paths in a public transit network with real-time data. In: Transportation research board 90th annual meeting, pp 1–14.  https://doi.org/10.3141/2256-05
  12. Järv O, Tenkanen H, Salonen M, Toivonen T (2016) Dynamic spatial accessibility modelling: access as a function of time. AGILE 2016:14–17Google Scholar
  13. Jihua H, Zhifeng C, Guangpeng Z, Ze H (2013) A calculation method and its application of bus isochrones. J Transp Syst Eng Inf Technol 13(3):99–104.  https://doi.org/10.1016/S1570-6672(13)60111-7 Google Scholar
  14. Lee W-H, Tseng S-S, Tsai S-H (2009) A knowledge based real-time travel time prediction system for urban network. Expert Syst Appl 36(3):4239–4247.  https://doi.org/10.1016/j.eswa.2008.03.018 CrossRefGoogle Scholar
  15. Li Q, Zhang T, Wang H, Zeng Z (2011) Dynamic accessibility mapping using floating car data: a network-constrained density estimation approach. J Transp Geogr 19(3):379–393.  https://doi.org/10.1016/j.jtrangeo.2010.07.003 CrossRefGoogle Scholar
  16. Li X, Kraak M (2008) The time wave. a new method of visual exploration of geo-data in time. Cartographic J 45(3):193–200.  https://doi.org/10.1179/000870408X311387 CrossRefGoogle Scholar
  17. Marciuska S, Gamper J (2010) Determining objects within isochrones in spatial network databases, 392–405Google Scholar
  18. Melhorado AMC, Demirel H, Kompil M, Navajas E, Christidis P (2016) The impact of measuring internal travel distances on self-potentials and accessibility. Eur J Transp Infrastruct Res 16(2):300–318Google Scholar
  19. Meppelink J, Van Langen J, Siebes A, Spruit M (2015) Know your bias : scaling mobile phone data to measure traffic intensitiesGoogle Scholar
  20. Miller HJ, Bridwell SA (2009) A field-based theory for time geography. Ann Assoc Am Geogr 99(1):49–75.  https://doi.org/10.1080/00045600802471049 CrossRefGoogle Scholar
  21. Obe RO, Hsu LS (2017) pgRouting: a practical guide. Locate Press, ChugiakGoogle Scholar
  22. O’Sullivan D, Morrison A, Shearer J (2000) Using desktop GIS for the investigation of accessibility by public transport: an isochrone approach. Int J Geogr Inf Sci 14(1):85–104.  https://doi.org/10.1080/136588100240976 CrossRefGoogle Scholar
  23. QGIS (2017) QGIS. http://www.qgis.org/en/site/ Accessed 13 Jan 2017
  24. QGIS TimeManager (2017) QGIS python plugins repository. https://plugins.qgis.org/plugins/timemanager/ Accessed 13 Jan 2017
  25. Shaw S-L (2006) What about “time” in transportation geography? J Transp Geogr 14:237–240.  https://doi.org/10.1016/j.jtrangeo.2006.02.009 CrossRefGoogle Scholar
  26. Steenbruggen J, Tranos E, Nijkamp P (2015) Data from mobile phone operators: a tool for smarter cities? Telecommun Policy 39(3–4):335–346.  https://doi.org/10.1016/j.telpol.2014.04.001
  27. Tenkanen H, Saarsalmi P, Järv O, Salonen M, Toivonen T (2016) Health research needs more comprehensive accessibility measures: integrating time and transport modes from open data. Int J Health Geogr 15(1):23.  https://doi.org/10.1186/s12942-016-0052-x
  28. Ullah R, Kraak M (2015) An alternative method to constructing time cartograms for the visual representation of scheduled movement data. J Maps 11(4):674–687.  https://doi.org/10.1080/17445647.2014.935502 CrossRefGoogle Scholar
  29. Zeng W, Fu CW, Arisona SM, Erath A, Qu H (2014) Visualizing mobility of public transportation system. IEEE Trans Visual Comput Graph 20(12):1833–1842.  https://doi.org/10.1109/TVCG.2014.2346893 CrossRefGoogle Scholar
  30. Zook M, Kraak M, Ahas R (2015) Geographies of mobility: applications of location-based data. Int J Geogr Inf Sci 29(11):1935–1940.  https://doi.org/10.1080/13658816.2015.1061667 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Joris van den Berg
    • 1
    Email author
  • Barend Köbben
    • 2
  • Sander van der Drift
    • 3
  • Luc Wismans
    • 3
    • 4
  1. 1.Faculty of GeosciencesUU—Utrecht UniversityUtrechtThe Netherlands
  2. 2.Faculty of Geo-Information Science and Earth ObservationITC—University of TwenteEnschedeThe Netherlands
  3. 3.DAT.MobilityDeventerThe Netherlands
  4. 4.Engineering Technology FacultyCTS—University of TwenteEnschedeThe Netherlands

Personalised recommendations