Locations Selection for Periodic Radio Map Update in WiFi Fingerprinting

  • Germán M. Mendoza-SilvaEmail author
  • Joaquín Torres-Sospedra
  • Joaquín Huerta
Conference paper
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


The construction and update of a radio map are usually referred as the main drawbacks of WiFi fingerprinting, a very popular method in indoor localization research. For radio map update, some studies suggest taking new measurements at some random locations, usually from the ones used in the radio map construction. In this paper, we argue that the locations should not be random, and propose how to determine them. Given the set locations where the measurements used for the initial radio map construction were taken, a subset of locations for the update measurements is chosen through optimization so that the remaining locations found in the initial measurements are best approximated through regression. The regression method is Support Vector Regression (SVR) and the optimization is achieved using a genetic algorithm approach. We tested our approach using a database of WiFi measurements collected at a relatively dense set of locations during ten months in a university library setting. The experiments results show that, if no dramatic event occurs (e.g., relevant WiFi networks are changed), our approach outperforms other strategies for determining the collection locations for periodic updates. We also present a clear guide on how to conduct the radio map updates.


Wifi fingerprinting Radio map update Regression Optimization Genetic algorithm 



Germán M. Mendoza-Silva gratefully acknowledges funding from grant PREDOC/2016/55 by Universitat Jaume I.


  1. Ali MU, Hur S, Park Y (2017) Locali: calibration-free systematic localization approach for indoor positioning. Sensors 17(6).
  2. Alonazi A, Ma Y, Tafazolli R (2015) Less-calibration wi-fi-based indoor positioning. In: 2015 IEEE international conference on communications (ICC), pp 2733–2738.
  3. Bong W, Kim YC (2012) Fingerprint wi-fi radio map interpolated by discontinuity preserving smoothing. In: International conference on hybrid information technology. Springer, pp 138–145Google Scholar
  4. Ezpeleta S, Claver JM, Pérez-Solano JJ, Martí JV (2015) Rf-based location using interpolation functions to reduce fingerprint mapping. Sensors 15(10):27, 322–27, 340Google Scholar
  5. Gu Y, Chen M, Ren F, Li J (2016a) HED: handling environmental dynamics in indoor WiFi fingerprint localization. In: 2016 IEEE wireless communications and networking conference, pp 1–6.
  6. Gu Z, Chen Z, Zhang Y, Zhu Y, Lu M, Chen A (2016b) Reducing fingerprint collection for indoor localization. Comput Commun 83:56–63. CrossRefGoogle Scholar
  7. He S, Chan SHG (2016) Wi-Fi fingerprint-based indoor positioning: recent advances and comparisons. IEEE Commun Surv Tutor 18(1):466–490. CrossRefGoogle Scholar
  8. Hernández N, Ocaña M, Alonso JM, Kim E (2017) Continuous space estimation: increasing wifi-based indoor localization resolution without increasing the site-survey effort. Sensors 17(1)Google Scholar
  9. Hossain AKMM, Soh WS (2015) A survey of calibration-free indoor positioning systems. Comput Commun 66:1–13. CrossRefGoogle Scholar
  10. Jan SS, Yeh SJ, Liu YW (2015) Received signal strength database interpolation by kriging for a wi-fi indoor positioning system. Sensors 15(9):21, 377–21, 393.
  11. Joshi S, Boyd S (2009) Sensor selection via convex optimization. IEEE Trans Signal Process 57(2):451–462CrossRefGoogle Scholar
  12. Kanaris L, Kokkinis A, Fortino G, Liotta A, Stavrou S (2016) Sample size determination algorithm for fingerprint-based indoor localization systems. Comput Netw 101:169–177. CrossRefGoogle Scholar
  13. Krumm J, Platt J (2003) Minimizing calibration effort for an indoor 802.11 device location measurement system. Microsoft Research, NovemberGoogle Scholar
  14. Lee M, Han D (2012) Voronoi tessellation based interpolation method for wi-fi radio map construction. IEEE Commun Lett 16(3):404–407. CrossRefGoogle Scholar
  15. Li B, Wang Y, Lee HK, Dempster A, Rizos C (2005) Method for yielding a database of location fingerprints in wlan. IEE Proc—Commun 152(5):580–586.
  16. Li L, Shen J, Zhao C, Moscibroda T, Lin JH, Zhao F (2014) Experiencing and handling the diversity in data density and environmental locality in an indoor positioning service. ACM—Association for Computing MachineryGoogle Scholar
  17. Lin K, Chen M, Deng J, Hassan MM, Fortino G (2016) Enhanced fingerprinting and trajectory prediction for iot localization in smart buildings. IEEE Trans Autom Sci Eng 13(3):1294–1307. CrossRefGoogle Scholar
  18. Liu C, Kiring A, Salman N, Mihaylova L, Esnaola I (2015) A kriging algorithm for location fingerprinting based on received signal strength. In: 2015 sensor data fusion: trends, solutions, applications (SDF), pp 1–6.
  19. Macho-Pedroso R, Domingo-Perez F, Velasco J, Losada-Gutierrez C, Macias-Guarasa J (2016) Optimal microphone placement for indoor acoustic localization using evolutionary optimization. In: 2016 international conference on indoor positioning and indoor navigation (IPIN), pp 1–8.
  20. Majeed K, Sorour S, Al-Naffouri TY, Valaee S (2016) Indoor localization and radio map estimation using unsupervised manifold alignment with geometry perturbation. IEEE Trans Mob Comput 15(11):2794–2808. CrossRefGoogle Scholar
  21. MathWorks® (2017a) Extrapolating scattered data, in MATLAB® R2017b.
  22. MathWorks® (2017b) Support vector machine regression, in MATLAB® R2017b and statistics and machine learning toolbox\(^{\rm TM}\).
  23. Mitchell M (1998) An introduction to genetic algorithms. MIT pressGoogle Scholar
  24. Pei L, Zhang M, Zou D, Chen R, Chen Y (2016) A survey of crowd sensing opportunistic signals for indoor localization. Mob Inf Syst 2016Google Scholar
  25. Ranieri J, Chebira A, Vetterli M (2014) Near-optimal sensor placement for linear inverse problems. IEEE Trans Signal Process 62(5):1135–1146CrossRefGoogle Scholar
  26. Rowaihy H, Eswaran S, Johnson M, Verma D, Bar-Noy A, Brown T, La Porta T (2007) A survey of sensor selection schemes in wireless sensor networks. Proc SPIE 6562:A1–A13Google Scholar
  27. Roy V, Simonetto A, Leus G (2016) Spatio-temporal sensor management for environmental field estimation. Signal Process 128:369–381CrossRefGoogle Scholar
  28. Talvitie J, Renfors M, Lohan ES (2015) Distance-based interpolation and extrapolation methods for rss-based localization with indoor wireless signals. IEEE Trans Veh Technol 64(4):1340–1353. CrossRefGoogle Scholar
  29. Wang B, Chen Q, Yang LT, Chao HC (2016) Indoor smartphone localization via fingerprint crowdsourcing: challenges and approaches. IEEE Wirel Commun 23(3):82–89. CrossRefGoogle Scholar
  30. Xiao Z, Wen H, Markham A, Trigoni N (2015) Robust indoor positioning with lifelong learning. IEEE J Select Areas Commun 33(11):2287–2301. CrossRefGoogle Scholar
  31. Yang S, Dessai P, Verma M, Gerla M (2013) Freeloc: calibration-free crowdsourced indoor localization. In: 2013 proceedings IEEE INFOCOM, pp 2481–2489.
  32. Yao L, Sethares WA, Kammer DC (1993) Sensor placement for on-orbit modal identification via a genetic algorithm. AIAA J 31(10):1922–1928CrossRefGoogle Scholar
  33. Yiu S, Dashti M, Claussen H, Perez-Cruz F (2017) Wireless rssi fingerprinting localization. Signal Process 131:235–244CrossRefGoogle Scholar
  34. Zhu JY, Zheng AX, Xu J, Li VOK (2014) Spatio-temporal (s-t) similarity model for constructing wifi-based rssi fingerprinting map for indoor localization. In: 2014 international conference on Indoor positioning and indoor navigation (IPIN), pp 678–684.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Germán M. Mendoza-Silva
    • 1
    Email author
  • Joaquín Torres-Sospedra
    • 1
  • Joaquín Huerta
    • 1
  1. 1.Institute of New Imaging TechnologiesUniversitat Jaume ICastellónSpain

Personalised recommendations