Skip to main content

A Higher Order Isoparametric Fictitious Domain Method for Level Set Domains

  • Conference paper
  • First Online:
Geometrically Unfitted Finite Element Methods and Applications

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 121))

Abstract

We consider a new fictitious domain approach of higher order accuracy. To implement Dirichlet conditions we apply the classical Nitsche method combined with a facet-based stabilization (ghost penalty). Both techniques are combined with a higher order isoparametric finite element space which is based on a special mesh transformation. The mesh transformation is build upon a higher order accurate level set representation and allows to reduce the problem of numerical integration to problems on domains which are described by piecewise linear level set functions. The combination of this strategy for the numerical integration and the stabilized Nitsche formulation results in an accurate and robust method. We introduce and analyze it and give numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bastian, P., Engwer, C.: An unfitted finite element method using discontinuous Galerkin. Int. J. Numer. Methods Eng. 79, 1557–1576 (2009)

    Google Scholar 

  2. Becker, R., Burman, E., Hansbo, P.: A hierarchical NXFEM for fictitious domain simulations. Int. J. Numer. Methods Eng. 86, 549–559 (2011)

    Google Scholar 

  3. Bernardi, C.: Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26, 1212–1240 (1989)

    Google Scholar 

  4. Boiveau, T., Burman, E., Claus, S., Larson, M.G.: Fictitious domain method with boundary value correction using penalty-free Nitsche method. J. Numer. Math. (2017). https://doi.org/10.1515/jnma-2016-1103

  5. Burman, E.: Ghost penalty. C. R. Math. Acad. Sci. Paris 348, 1217–1220 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. a stabilized Nitsche method. Appl. Numer. Math. 62, 328–341 (2012)

    Google Scholar 

  7. Burman, E., Claus, S., Hansbo, P., Larson, M.G., Massing, A.: CutFEM: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104(7), 472–501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burman, E., Hansbo, P., Larson, M.G.: A cut finite element method with boundary value correction. arXiv preprint arXiv:1507.03096 (2015)

    Google Scholar 

  9. Burman, E., Elfverson, D., Hansbo, P., Larson, M.G., Larsson, K.: Shape optimization using the cut finite element method. arXiv preprint arXiv:1611.05673 (2016)

    Google Scholar 

  10. Burman, E., Elfverson, D., Hansbo, P., Larson, M.G., Larsson, K.: A cut finite element method for the bernoulli free boundary value problem. Comput. Methods Appl. Mech. Eng. 317, 598–618 (2017)

    Article  MathSciNet  Google Scholar 

  11. Carraro, T., Wetterauer, S.: On the implementation of the eXtended finite element method (XFEM) for interface problems. arXiv preprint arXiv:1507.04238 (2015)

    Google Scholar 

  12. Cheng, K.W., Fries, T.-P.: Higher-order XFEM for curved strong and weak discontinuities. Int. J. Numer. Methods Eng. 82, 564–590 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Ciarlet, P.G., Raviart, P.-A.: Interpolation theory over curved elements, with applications to finite element methods. Comput. Methods Appl. Mech. Eng. 1, 217–249 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dréau, K., Chevaugeon, N., Moës, N.: Studied X-FEM enrichment to handle material interfaces with higher order finite element. Comput. Methods Appl. Mech. Eng. 199, 1922–1936 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Engwer, C., Heimann, F.: Dune-UDG: a cut-cell framework for unfitted discontinuous Galerkin methods. In: Advances in DUNE, pp. 89–100. Springer, Berlin (2012)

    Google Scholar 

  16. Ern, A., Guermond, J.-L.: Finite element quasi-interpolation and best approximation. arXiv preprint arXiv:1505.06931 (2015)

    Google Scholar 

  17. Fries, T.-P., Belytschko, T.: The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84, 253–304 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Fries, T.-P., Omerović, S.: Higher-order accurate integration of implicit geometries. Int. J. Numer Methods Eng. 106, 323–371 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Galdi, G.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, 2nd edn. Springer, New York (2011)

    Book  MATH  Google Scholar 

  20. Grande, J., Lehrenfeld, C., Reusken, A.: Analysis of a high order trace finite element method for PDEs on level set surfaces. arXiv preprint arXiv:1611.01100 (2016)

    Google Scholar 

  21. Groß, S., Reusken, A.: An extended pressure finite element space for two-phase incompressible flows. J. Comput. Phys. 224, 40–58 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Groß, S., Peters, J., Reichelt, V., Reusken, A.: The DROPS package for numerical simulations of incompressible flows using parallel adaptive multigrid techniques. Preprint. IGPM, RWTH Aachen (2002)

    Google Scholar 

  23. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche´s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191, 5537–5552 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hansbo, P., Larson, M.G., Zahedi, S.: A cut finite element method for a stokes interface problem. Appl. Num. Math. 85, 90–114 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Johansson, A., Larson, M.G.: A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary. Numer. Math. 123, 607–628 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lederer, P., Pfeiler, C.-M., Wintersteiger, C., Lehrenfeld, C.: Higher order unfitted fem for stokes interface problems. PAMM 16, 7–10 (2016)

    Article  Google Scholar 

  27. Lehrenfeld, C.: The Nitsche XFEM-DG space-time method and its implementation in three space dimensions. SIAM J. Sci. Comput. 37, A245–A270 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lehrenfeld, C.: On a Space-Time Extended Finite Element Method for the Solution of a Class of Two-Phase Mass Transport Problems, PhD thesis, RWTH Aachen (2015)

    Google Scholar 

  29. Lehrenfeld, C.: High order unfitted finite element methods on level set domains using isoparametric mappings. Comput. Methods Appl. Mech. Eng. 300, 716–733 (2016)

    Article  MathSciNet  Google Scholar 

  30. Lehrenfeld, C., Reusken, A.: Analysis of a high order unfitted finite element method for an elliptic interface problem. arXiv preprint arXiv:1602.02970 (2016). Accepted for publication in IMA JNA (2017)

    Google Scholar 

  31. Lehrenfeld, C., Reusken, A.: L 2-estimates for a high order unfitted finite element method for elliptic interface problems. arXiv preprint arXiv:1604.04529 (2016)

    Google Scholar 

  32. Lenoir, M.: Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23, 562–580 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. Massing, A., Larson, M.G., Logg, A., Rognes, M.: A stabilized Nitsche fictitious domain method for the Stokes problem. J. Sci. Comput. 61, 604–628 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Massing, A., Schott, B., Wall, W.A.: A stabilized Nitsche cut finite element method for the Oseen problem. arXiv preprint arXiv:1611.02895 (2016)

    Google Scholar 

  35. Massjung, R.: An unfitted discontinuous Galerkin method applied to elliptic interface problems. SIAM J. Numer. Anal. 50, 3134–3162 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mayer, U.M., Gerstenberger, A., Wall, W.A.: Interface handling for three-dimensional higher-order XFEM-computations in fluid–structure interaction. Int. J. Numer. Methods Eng. 79, 846–869 (2009)

    Article  MATH  Google Scholar 

  37. Müller, B., Kummer, F., Oberlack, M.: Highly accurate surface and volume integration on implicit domains by means of moment-fitting. Int. J. Numer. Methods Eng. 96, 512–528 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nærland, T.A.: Geometry decomposition algorithms for the Nitsche method on unfitted geometries. Master’s thesis, University of Oslo (2014)

    Google Scholar 

  39. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36, 9–15 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  40. Olshanskii, M.A., Reusken, A., Grande, J.: A finite element method for elliptic equations on surfaces. SIAM J. Numer. Anal. 47, 3339–3358 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Oswald, P.: On a BPX-preconditioner for \(\mathbb {P}_1\) elements. Computing 51, 125–133 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Parvizian, J., Düster, A., Rank, E.: Finite cell method. Comput. Mech. 41, 121–133 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  43. Fournié, M., Renon, N., Renard, Y., Ruiz, D.: CFD parallel simulation using Getfem++ and mumps. In: Euro-Par 2010-Parallel Processing, pp. 77–88. Springer (2010)

    Google Scholar 

  44. Schöberl, J.: C++11 implementation of finite elements in NGSolve, Tech. Rep. ASC-2014-30, Institute for Analysis and Scientific Computing (2014)

    Google Scholar 

  45. Sudhakar, Y., Wall, W.A.: Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods. Comput. Methods Appl. Mech. Eng. 258, 39–54 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wadbro, E., Zahedi, S., Kreiss, G., Berggren, M.: A uniformly well-conditioned, unfitted Nitsche method for interface problems. BIT Numer. Math. 53, 791–820 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges funding by the German Science Foundation (DFG) within the project “LE 3726/1-1”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Lehrenfeld .

Editor information

Editors and Affiliations

Appendix: Selected Proofs

Appendix: Selected Proofs

We give the proofs of some of the more technical results in Sect. 5.

Proof of Lemma 2

The first estimate has been proven in [20] for \(T \in \mathscr {T}_h^\varGamma \). With the extension operator applied in the projection step \(P_h^2\) this property carries over to every element \(T \in \mathscr {T}_h\), cf. the analysis in [30]. The proof for the inverse transformation is based around the following estimate from [13]:

$$\displaystyle \begin{aligned} \vert \varTheta_h^{-1} \vert_{l,\infty,\varTheta_h(T)} & \lesssim | \varTheta_h^{-1} |{}_{1,\infty,\varTheta_h(T)} \sum_{m=2}^l | \varTheta_h |{}_{m,\infty,T} \sum_{j \in \mathscr{I}(m,l)} \prod_{n=1}^{l-1} \vert \varTheta_h^{-1} \vert_{n,\infty,\varTheta_h(T)}^{j_n} \\ \text{ with } \quad \mathscr{I}(m,l) & := \{j = (j_1,..,j_{l-1}) \mid \sum_{n=1}^{l-1} j_n = m, \sum_{n=1}^{l-1} n j_n = l\}. \end{aligned} $$

Starting with \(\vert \varTheta _h^{-1} \vert _{1,\infty ,\varTheta _h(T)} \lesssim 1\) which follows from Lemma 1 the claim follows by induction.

Proof of Lemma 6

We define \(\hat {v} := v \circ \varTheta _h\) with \(\hat {v}|{ }_T \in \mathscr {P}^k(T),~ T \in \mathscr {T}_h^{\varGamma ,+}\). There holds the following estimate due to a higher order chain rule for multivariate functions, cf. [13],

$$\displaystyle \begin{aligned} \vert \hat{v} \circ \varTheta_h^{-1} \vert_{l,\infty,\varTheta_h(T)} & \lesssim \sum_{m=1}^l | \hat{v} |{}_{m,\infty,T} \sum_{j \in \mathscr{J}(m,l)} \prod_{n=1}^l \vert \varTheta_h^{-1} \vert_{n,\infty,\varTheta_h(T)}^{j_n} \\ \text{ with } \quad \mathscr{J}(m,l) & := \{j = (j_1,..,j_l) \mid \sum_{n=1}^l j_n = m, \sum_{n=1}^l n j_n = l\}. \end{aligned} $$

There holds the finite element inverse inequality \( \vert \hat {v} \vert _{j,\infty ,T} \lesssim h^{-j} \Vert \hat {v} \Vert _{\infty ,T},~j\geq 0. \) Now, with Lemma 2 we have \( \vert \varTheta _h^{-1} \vert _{j,\infty ,\varTheta _h(T)} \lesssim 1\) and \(\vert \varTheta _h \vert _{j,\infty ,T} \lesssim 1\) and \(D^{k+1} \hat {v} = 0\) which completes the proof.

Proof of Lemma 7

We show (20a). The proof of estimate (20b) follows similar lines.

We mimic the proof of [33, Theorem 5.1], but need a few more technical steps due to F being curved and D k+1 v ≠ 0. First, we introduce simply connected domains B 1 ⊂ T 1, C 2 ⊂ T 2 and F ⊂ F with diam(B 1), diam(C 2), diam(F ) ≳ h. For such domains standard finite element estimates give (with \(\hat {v} = v \circ \varTheta _h^{-1}\))

$$\displaystyle \begin{aligned}\Vert v \Vert_{T_1}^2 \simeq \Vert \hat{v} \Vert_{\hat{T}_1}^2 \simeq \Vert \hat{v} \Vert_{\varTheta_h^{-1}(B_1)}^2 \simeq \Vert v \Vert_{B_1}^2, \end{aligned}$$

and a similar result for C 2. For a simply connected domain F ⊂ F we define \(T_i^\ast (F^\ast ) := \{ x \in T_i \mid x = x_F + \gamma n_F(x_F), x_F \in F, \gamma \in \mathbb {R} \}\). For x = x F  + γn F (x F ) in \(T_i^\ast \) we define the mirror point M(x) = x F  − γn F (x F ). Now, for h sufficiently small we find domains F ⊂ F, a ball \(B_1 \subset T_1^\ast (F^\ast )\) and C 2 := M(B 1) = {x = M(y), y ∈ B 1} which fulfil the aforementioned requirements.

To each point x 1 = x F  + γn F (x F ) in B 1 we have a corresponding point x 2 = M(x 1) in C 2. We develop \(v_i:=v|{ }_{T_i}\) around x F and obtain (for a ξ i  = x F  ± γ ξ n F  ∈ T i , γ ξ  ∈ [0, γ])

$$\displaystyle \begin{aligned}v_i(x_i) = v_i(x_F) + \sum_{l=1}^{k} \frac{\gamma^l}{l!} \frac{\partial^l v_i}{\partial n^l}(x_F) + \frac{\gamma_{\xi}^{k+1}}{(k+1)!} \frac{\partial^{k+1} v_i}{\partial n^{k+1}}(\xi). \end{aligned}$$

Subtracting and integrating over B 1 then gives

$$\displaystyle \begin{aligned} \Vert v_1 \Vert_{B_1}^2 \lesssim \Vert v_2\circ M \Vert_{B_1}^2 + k \sum_{l=1}^k \frac{h^{2l+1}}{l!^2} \Vert [\hspace{-0.05cm}[ \partial_n^l v ]\hspace{-0.05cm}] \Vert_F^2 + 2 |B_1| \frac{h^{2k+2}}{(k+1)!^2} \Vert D^{k+1} v \Vert_{\infty,T_1 \cup T_2}^2. \end{aligned} $$
(30)

Exploiting the properties of M, and Lemma 6, we get

$$\displaystyle \begin{aligned} \Vert v \Vert_{T_1}^2 & \leq c \Vert v \Vert_{T_2}^2 + J_F(v,v) + c h^2 \left( \Vert v \Vert_{T_1}^2 + \Vert v \Vert_{T_2}^2 \right). \end{aligned} $$

Now, for h sufficiently small the last term can be absorbed by the others and the claim holds true.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lehrenfeld, C. (2017). A Higher Order Isoparametric Fictitious Domain Method for Level Set Domains. In: Bordas, S., Burman, E., Larson, M., Olshanskii, M. (eds) Geometrically Unfitted Finite Element Methods and Applications. Lecture Notes in Computational Science and Engineering, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-71431-8_3

Download citation

Publish with us

Policies and ethics