Skip to main content

Modification of the Interface/Interphase in Natural Fibre Reinforced Composites: Treatments and Processes

  • Chapter
  • First Online:
Surfaces and Interfaces in Natural Fibre Reinforced Composites

Abstract

The modification of surface properties of synthetic reinforcement fibres to modify composite interphase performance is mostly achieved by chemical functionalization techniques in aqueous media, and in some cases in organic media. In particular, surface treatments of glass fibres are carried out by the use of complex aqueous chemical systems, known as sizings, including one or more organofunctional silane coupling agents, a film former and other additives, i.e. cationic or non-ionic lubricants, anti-static agents, surfactants, wetting agents, chopping aids, and antioxydants). Natural fibres does not yet benefit from such a technological and scientific background. Thereby, many strategies of bulk and surface modifications are currently developed to implement natural fibres in composite materials applications. In this chapter, the different pre-treatments and functionalization treatments and related processes developed to modify natural fibres and interfacial properties in biocomposites will be exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Commonly referred to as “defibring” in the case of hemp and “scutching” in the case of flax.

References

  • Acera Fernández J, Le Moigne N, Caro-Bretelle AS, El Hage R, Le Duc A, Lozachmeur M, Bono P, Bergeret A (2016) Role of flax cell wall components on the microstructure and transverse mechanical behaviour of flax fabrics reinforced epoxy biocomposites. Ind Crops Prod 85:93–108

    Article  Google Scholar 

  • Akin DE, Gamble GR, Morrison WH III, Rigsby LL, Dodd RB (1996) Chemical and structural analysis of fibre and core tissues from flax. J Sci Food Agric 72:155–165

    Article  Google Scholar 

  • Arbelaiz A, Fernandez B, Cantero G, Llano-Ponte R, Valea A, Mondragon I (2005) Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos Part A Appl S 36:1637–1644

    Article  Google Scholar 

  • Arputharaj A, Raja ASM, Saxena S (2016) Developments in Sustainable Chemical Processing of Textiles. In: Muthu SS, Gardetti MA (eds) Green fashion, environmental footprints and eco–design of products and processes. Springer, Singapore, pp 217–252

    Google Scholar 

  • Arthur JC (1971) Reactions Induced by High-Energy Radiation. In: Bikales NM, Segal L (eds) High polymers: cellulose and cellulose derivatives. Wiley-Interscience, New York, pp 937–975

    Google Scholar 

  • Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P (2011a) Effect of thermal–treatment of wood fibres on properties of flat–pressed wood plastic composites. Polym Degrad Stabil 96:818–822

    Article  Google Scholar 

  • Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P, White RH (2011b) Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fiber Polym 12:919–926

    Article  Google Scholar 

  • Baiardo M, Frisoni G, Scandola M, Licciardello A (2002) Surface chemical modification of natural cellulose fibers. J Appl Polym Sci 83:38–45

    Article  Google Scholar 

  • Baiardo M, Zini E, Scandola M (2004) Flax fibre–polyester composites. Comp Part A– Appl Sci 35:703–710

    Google Scholar 

  • Baley C, Busnel F, Grohens Y, Sire O (2006) Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin. Compos Part A Appl Sci Manuf 37:1626–1637

    Article  Google Scholar 

  • Baltazar-y-Jimenez A, Juntaro J, Bismarck A (2008a) Effect of atmospheric air pressure plasma treatment on the thermal behaviour of natural fibres and dynamical mechanical properties of randomly–oriented short fibre composites. J Biobased Mater Bioenergy 2(3):264–272

    Article  Google Scholar 

  • Baltazar-y-Jimenez A, Bistritz M, Schulz E, Bismarck A (2008b) Atmospheric air pressure plasma treatment of lignocellulosic fibres: impact on mechanical properties and adhesion to cellulose acetate butyrate. Compos Sci Technol 68(1):215–227

    Article  Google Scholar 

  • Belgacem MN, Gandini A (2005) The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Compos Interface 12:41–75

    Article  Google Scholar 

  • Bergeret A, Krawczak P (2006) Liaison renfort/matrice: définition et caractérisation. Techniques de l’Ingénieur, Plastiques et Composites AM 5305:1–19

    Google Scholar 

  • Berlioz S, Stinga C, Condoret J, Samain D (2008) Novel principle of chemical grafting for cellulose. Int J Chem React Eng 6(1):1542–6580

    Google Scholar 

  • Berthet MA, Commandré JM, Rouau X, Gontard N, Angellier-Coussy H (2016) Torrefaction treatment of lignocellulosic fibres for improving fibre/matrix adhesion in a biocomposites. Mater Design 92:223–232

    Article  Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  Google Scholar 

  • Bouchard J, Méthot M, Jordan B (2006) The effects of ionizing radiation on the cellulose of woodfree paper. Cellulose 13:601–610

    Article  Google Scholar 

  • Bourmaud A, Riviere J, Le Duigou A, Raj G, Baley C (2009) Investigations of the use of a mussel-inspired compatibilizer to improve the matrix-fiber adhesion of a biocomposite. Polym Test 28:668–672

    Article  Google Scholar 

  • Bourmaud A, Morvan C, Baley C (2010) Importance of fiber preparation to optimize the surface and mechanical properties of unitary flax fiber. Ind Crops Prod 32:662–667

    Article  Google Scholar 

  • Bouzouita S, Salvia M, Ben Daly H, Dogui A, Forest E (2010) Effect of fiber treatment on fiber strength and fiber/matrix interface of hemp reinforced polypropylene composites. Adv Mater Res 112:1–8

    Article  Google Scholar 

  • Bouzouita S (2011) Optimisation des interfaces fibre–matrice de composites à renfort naturel. Thèse de doctorat, Ecole Centrale de Lyon (France) – Ecole Nationale d’Ingénieurs de Monastir (Tunisia)

    Google Scholar 

  • Bozaci E, Sever K, Sarikanat M, Seki Y, Demir A, Ozdogan E, Tavman I (2013) Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber–matrix for composite materials. Compos Part B Eng 45:565–572

    Article  Google Scholar 

  • Brown AE, Sharma HSS, Black DLR (1986) Relationship between pectin content of stems of flax cultivars, fungal cell wall–degrading enzymes and pre–harvest retting. Ann Appl Biol 109:345–351

    Article  Google Scholar 

  • Calabia BP, Ninomiya F, Yagi H, Oishi A, Taguchi K, Kunioka M, Funabashi M (2013) Biodegradable Poly(butylene succinate) composites reinforced by cotton fiber with silane coupling agent. Polymer 5(1):128–141

    Article  Google Scholar 

  • Chandrasekar M, Ishak MR, Sapuan SM, Leman Z, Jawaid M (2017) A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast, Rubber Compos 46:119–136

    Article  Google Scholar 

  • Choi H, Han S, Lee J (2009) The effects of morphological properties of henequen fiber irradiated by EB on the mechanical and thermal properties of henequen fiber/PP composites. Compos Interfaces 16:751–768

    Article  Google Scholar 

  • Credou J, Berthelot T (2014) Cellulose: from biocompatible to bioactive material. J Mater Chem B 2:4767–4788

    Article  Google Scholar 

  • Cunha AG, Freire C, Silvestre A, Pascoal Neto C, Gandini A, Belgacem MN, Chaussy D, Beneventi D (2010) Preparation of highly hydrophobic and lipophobic cellulose fibers by a straightforward gas–solid reaction. J Colloid Interf Sci 344:588–595

    Article  Google Scholar 

  • Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose 17:875–889

    Article  Google Scholar 

  • Dogan SD, Tayfun U, Dogan M (2016) New route for modifying cellulosic fibres with fatty acids and its application to polyethylene/jute fibre composites. J Compos Mater 50(18):2477–2485

    Article  Google Scholar 

  • Driscoll M, Stipanovic A, Winter W, Cheng K, Manning M, Spiese J, Galloway RA, Cleland MR (2009) Electron beam irradiation of cellulose. Radiat Phys Chem 78:539–542

    Article  Google Scholar 

  • Fages J (2003) Powder processing using supercritical fluids. In: Bonnaudin N, Cansell F, Fouassier O (eds) Supercritical fluids & materials, ISASF, pp 33–85

    Google Scholar 

  • Faruk O, Bledzki A, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  Google Scholar 

  • Faruk O, Bledzki A, Fink HP, Sain M (2014) Progress report on natural fiber reinforced composites. Macromol Mater Eng 299:9–26

    Article  Google Scholar 

  • Flax Technic® (2017) TwinFlax products. http://www.flaxtechnic.fr/en/products/twinflax/. Accessed 6 Feb 2017

  • Freire CSR, Silvestre AJD, Neto CP, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100:1093–1102

    Article  Google Scholar 

  • Freire CSR, Silvestre AJD, Neto CP, Gandini A, Martin L, Mondragon I (2008) Composites based on acylated cellulose fibers and low–density polyethylene: Effect of the fiber content, degree of substitution and fatty acid chain length on final properties. Compos Sci Technol 68:3358–3364

    Article  Google Scholar 

  • Gaiolas C, Amaral ME, Costa AP, Silva MJS, Belgacem MN (2012) Cold–plasma assisted grafting of cellulose fibres by acrylic monomers. AIP Conf Proc 1459:296–299

    Article  Google Scholar 

  • Gassan J, Gutowski VS (2000) Effects of corona discharge and UV treatment on the properties of jute–fibre expoxy composites. Compos Sci Technol 60:2857–2863

    Article  Google Scholar 

  • Gassan J, Bledzki AK (2001) Thermal degradation of flax and jute fibers. J Appl Polym Sci 82:1417–1422

    Article  Google Scholar 

  • George J, Ivens J, Verpoest I (1999) Mechanical properties of flax fibre reinforced epoxy composites. Angew Makromol Chem 272:41–45

    Article  Google Scholar 

  • George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng and Sci 41(9):1471–1485

    Article  Google Scholar 

  • Gironès J, Pimenta MTB, Vilaseca F, Carvalho AJF, Mutjé P, Curvelo AAS (2008) Blocked diisocyanates as reactive coupling agents: application to pine fiber polypropylene composites. Carbohydr Polym 74:106–113

    Article  Google Scholar 

  • González D, Santos V, Parajo JC (2012) Silane–treated lignocellulosic fibers as reinforcement material in polylactic acid biocomposites. J Thermoplastic Compos Mater 25(8):1005–1022

    Article  Google Scholar 

  • Gourier C, Le Duigou A, Bourmaud A, Baley C (2014) Mechanical analysis of elementary flax fibre tensile properties after different thermal cycles. Compos Part A Appl S 64:159–166

    Article  Google Scholar 

  • Graupner N (2008) Application of lignin as natural adhesion promoter in cotton fibre–reinforced poly(lactic acid) (PLA) composites. J Mater Sci 43:5222–5229

    Article  Google Scholar 

  • Graupner N, Fischer H, Ziegmann G, Müssig J (2014) Improvement and analysis of fi–bre/matrix adhesion of regenerated cellulose fibre reinforced PP-, MAPP- and PLA-composites by the use of Eucalyptus globulus lignin. Compos Part B Eng 66:117–125

    Article  Google Scholar 

  • Hakkou M, Pétrissans M, Gérardin P, Zoulalian A (2005a) Wettability of heat–treated wood. Holzforschung 59:35–37

    Article  Google Scholar 

  • Hakkou M, Pétrissans M, Gérardin P, Zoulalian A (2005b) Investigations of the reasons for fungal durability of heat–treated beech wood. Polym Degrad Stabil 91:393–397

    Article  Google Scholar 

  • Hakkou M, Pétrissans M, Zoulalian A, Gérardin P (2005c) Investigation of wood wettability changes during heat treatment on the basis of chemical analysis. Polym Degrad Stabil 89:1–5

    Article  Google Scholar 

  • Han S, Cho D, Park W, Drzal L (2006a) Henequen/poly(butylene succinate) biocomposites: electron beam irradiation effects on henequen fiber and the interfacial properties of biocomposites. Compos Interface 13:231–247

    Article  Google Scholar 

  • Han Y, Han S, Cho D, Kim H (2006b) Henequen/unsaturated polyester biocomposites: electron beam irradiation treatment and alkali treatment effects on the henequen fiber. Macromol Symp 245–246:539–546

    Article  Google Scholar 

  • Han Y, Han S, Cho D, Kim H (2007) Kenaf/polypropylene biocomposites: effects of electron beam irradiation and alkali treatment on kenaf natural fibers. Compos Interface 14:559–578

    Article  Google Scholar 

  • Hassaini L, Kaci M, Touati N, Pillin I, Kervoelen A, Bruzaud S (2017) Valorization of olive husk flour as filler for biocomposites based on poly(3–hydroxybutyrate–co–3–hydrixyvalerate): Effects of silane treatment. Polym Testing 59:430–440

    Article  Google Scholar 

  • Hijazi N (2014) Développement de composites nanostructurés à base de biopolyesters et de nanoparticules de chitosane générées par des procédés assistés par CO2 supercritique. Thèse de doctorat, Ecole des Mines Albi-Carmaux, France

    Google Scholar 

  • Hil CAS, Abdul Khalil HPS, Hale MD (1998) A study of the potential of acetylation to improve the properties of plant fibres. Ind Crops Prod 8:53–63

    Article  Google Scholar 

  • Hill CAS (2006) Thermal Modification of Wood. Wood modification: chemical, thermal and other processes. John Wiley & Sons Ltd, Chichester, UK, pp 99–127

    Chapter  Google Scholar 

  • Hutton BH, Parker IH (2009) A surface study of cellulose fibres impregnated with alkyl ketene dimers via subcritical and supercritical carbon dioxide. Colloids Surface A 334:59–65

    Article  Google Scholar 

  • Hutton BH, Shen W (2005) Sizing effects via AKD vaporization. Appita J 58:367–373

    Google Scholar 

  • Iller E, Kukiełka A, Stupińska H, Mikołajczykc W (2002) Electron–beam stimulation of the reactivity of cellulose pulps for production of derivatives. Radiat Phys Chem 63:253–257

    Article  Google Scholar 

  • Javadi A, Srithep Y, Pilla S, Lee J, Gong S, Turng LS (2010) Processing and characterization of solid and microcellular PHBV/coir fiber composites. Mater Sci Eng C30:749–757

    Article  Google Scholar 

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber–reinforced composites. Polym Compos 29:187–207

    Article  Google Scholar 

  • Kafi AA, Magniez K, Fox BL (2011) A surface–property relationship of atmospheric plasma treated jute composites. Compos Sci Technol 71:1692–1698

    Article  Google Scholar 

  • Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49:1253–1272

    Article  Google Scholar 

  • Kazayawoko M, Balatinecz JJ, Matuana LM (1999) Surface modification and adhesion mechanisms in woodfiber–polypropylene composites. J Mater Sci 34:6189–6199

    Article  Google Scholar 

  • Khan F (2005) Characterization of methyl methacrylate grafting onto preirradiated biodegradable lignocellulose fiber by γ–radiation. Macromol Biosci 5:78–89

    Article  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry. Wiley–VCH, Weinheim

    Google Scholar 

  • Kodama Y, Barsbay M, Güven O (2014) Radiation–induced and RAFT–mediated grafting of poly(hydroxylethyl methacrylate) (PHEMA) from cellulose surfaces. Radiat Phys Chem 94:98–104

    Article  Google Scholar 

  • Kuzuya M, Matsuno Y, Yamashiro T, Tsuiki M (1997) Electron spin resonance study on plasma Induced surface radicals of pol(ethylene naphthalate). Plasmas Polym 2:79–89

    Article  Google Scholar 

  • Kuzuya M, Niwa J, Ito H (1993) Nature of plasma–induced surface radicals of powdered polyethylene studied by electron spin resonance. Macromolecules 26:1990–1995

    Article  Google Scholar 

  • Kuzuya M, Yamashiro T, Kondo SI, Sugito M, Mouri M (1998) Plasma–induced surface radicals of low–density polyethylene studied by electron spin resonance. Macromolecules 31:3225–3229

    Article  Google Scholar 

  • Le Duigou A, Bourmaud A, Balnois E, Davies P, Baley C (2012) Improving the interfacial properties between flax fibres and PLLA by a water fibre treatment and drying cycle. Ind Crops Prod 39:31–39

    Article  Google Scholar 

  • Lefeuvre A, Le Duigou A, Bourmaud A, Kervoelen A, Morvan C, Baley C (2015) Analysis of the role of the main constitutive polysaccharides in the flax fibre mechanical behaviour. Ind Crops Prod 76:1039–1048

    Article  Google Scholar 

  • Le Moigne N, Budtova T, Van den Oever M (2013) Dynamic and capillary shear rheology of natural fiber–reinforced composites. Polym Eng Sci 53(12):2582–2593

    Article  Google Scholar 

  • Le Moigne N, Longerey M, Taulemesse JM, Bénézet JC, Bergeret A (2014) Study of the interface in natural fibres reinforced poly(lactic acid) biocomposites modified by optimized organosilane treatments. Ind Crops Prod 52:481–494

    Article  Google Scholar 

  • Le Moigne N, Sonnier R, El Hage R (2017) Radiation–induced modifications in natural fibres and their biocomposites: Opportunities for controlled physico–chemical modification pathways? Indus Crop Prod 109:199–213

    Article  Google Scholar 

  • Lee SH, Wang S (2006) Biodegradable polymers/bamboo fiber biocomposites with bio-based coupling agent. Compos Part A Appl Sci 37(1):80–91

    Article  Google Scholar 

  • Lee BH, Kim HS, Lee S, Kim HJ, Dorgan JR (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69:2573–2579

    Article  Google Scholar 

  • Li Y, Hu C, Yu Y (2008) Interfacial studies of sisal fiber reinforced high density polyethylene (HDPE) composites. Compos Part A– Appl Sci 39:570–578

    Google Scholar 

  • Li Y, Pickering KL (2008) Hemp fibre reinforced composites using chelator and enzyme treatments. Compos Sci Technol 68:3293–3298

    Article  Google Scholar 

  • Li Y (2009) Processing of hemp fibre using enzyme/fungal treatment for composites. PhD dissertation, University of Waikato, New–Zealand

    Google Scholar 

  • Li Y, Pickering KL, Farrell RL (2009) Analysis of green hemp fibre reinforced composites using bag retting and white rot fungal treatments. Ind Crops Prod 29:420–426

    Article  Google Scholar 

  • Li Y, Moyo S, Ding Z, Shan Z, Qiu Y (2013) Helium plasma treatment of ethanol–pretreated ramie fabrics for improving the mechanical properties of ramie/polypropylene composites. Ind Crops Prod 51:299–305

    Article  Google Scholar 

  • Loow YL, Wu TY, Yang GH, Jahim JMd, Teoh WH, Mohammad AW (2016) Role of energy irradiation in aiding pretreatment of lignocellulosic biomass for improving reducing sugar recovery. Cellulose 23:2761–2789

    Article  Google Scholar 

  • Lu JZ, Qing Lin W, McNabb HS (2000) Chemical coupling in wood fibre and polymer composites: a review of coupling agents and treatments. Wood Fibre Sci 32(1):88–104

    Google Scholar 

  • Lu T, Liu S, Jiang M, Xu X, Wang Y, Wang Z, Gou Jan, Hui D, Zhou Z (2014) Effects of modifications of bamboo cellulose fibers on the improved mechanical properties of cellulose reinforced poly (lactic acid) composites. Comp Part B Eng 62:191–197

    Google Scholar 

  • Ly B, Thielemans W, Dufresne A, Chaussy D, Belgacem MN (2008) Surface functionalization of cellulose fibres and their incorporation in renewable polymeric matrices. Compos Sci Technol 68:3193–3201

    Article  Google Scholar 

  • Majeed K, Jawaid M, Hassan A, Bakar AA, Khalil HA, Salema AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Design 46:391–410

    Article  Google Scholar 

  • Marduel J (2003) Procédé et dispositif d’imprégnation d’un réseau fibreux par de la poudre utilisant un champ électrostatique alternatif. Brevet EP 1526214:A1

    Google Scholar 

  • Martin N, Mouret N, Davies P, Baley C (2013) Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Ind Crops Prod 49:755–767

    Article  Google Scholar 

  • Matuana LM, Kamdem DP, Zhang J (2001) Photoaging and stabilization of rigid PVC/Wood–Fiber composites. J Appl Polym Sci 80:1943–1950

    Article  Google Scholar 

  • Meijer WJM, Vertregt N, Rutgers B, Van de Waart M (1995) The pectin content as a measure of the retting and rettability of flax. Ind Crops Prod 4:273–284

    Article  Google Scholar 

  • Moczo J, Pukanszky B (2008) Polymer micro and nanocomposites: structure, interactions, properties. J Ind Eng Chem 14:535–563

    Article  Google Scholar 

  • Mohanty AK, Drzal LT, Misra M (2002) Novel hybrid coupling agent as an adhesion promoter in natural fiber reinforced powder polypropylene composites. J Mater Sci Lett 21:1885–1888

    Article  Google Scholar 

  • Mohanty S, Nayak SK, Verma SK, Tripathy SS (2004) Effect of MAPP as a coupling agent on the performance of jute–PP composites. J Reinforced Plastics Compos 23:625–637

    Article  Google Scholar 

  • Mohanty S, Verma SK, Nayak SK (2006) Rheological characterization of HDPE/jute composite melts. J Appl Polym Sci 99:1476–1484

    Article  Google Scholar 

  • Nachtigall SMB, Cerveira GS, Rosa SML (2007) New polymeric–coupling agent for polypropylene/wood–flour composites. Polym Test 26:619–628

    Article  Google Scholar 

  • Nguila–Inari G (2008) Contribution à la compréhension des modifications moléculaires et macromoléculaires intervenant lors du traitement thermique du bois– Effet sur la réactivité chimique et sur la durabilité du matériau. Thèse de doctorat, Université Henri–Poincaré, Nancy–I, France

    Google Scholar 

  • Ohkita T, Lee SH (2004) Effect of aliphatic isocyanates (HDI and LDI) as coupling agents on the properties of eco–composites from biodegradable polymers and corn starch. J Adhes Sci Technol 18:905–924

    Article  Google Scholar 

  • Ouajai S, Hodzic A, Shanks R (2004) Morphological and grafting modification of natural cellulose fibers. J Appl Polym Sci 94:2456–2465

    Article  Google Scholar 

  • Paridah MT, Amel BA, Syeed OASA, Zakiah A (2011) Review of bast fiber retting. Bioresources 6:5260–5281

    Google Scholar 

  • Paridah MT, Khalina A (2009) Effect of soda retting on the tensile strength of kenaf (Hibiscus cannabinus L.) bast fibres. Project Report Kenaf EPU

    Google Scholar 

  • Petinakis E, Yu L, Edward G, Dean K, Liu H, Scully A (2009) Effect of matrix-particle interfacial adhesion on the mechanical properties of poly (lactic acid)/wood–flour micro-composites. J Polym Environ 17:83–94

    Article  Google Scholar 

  • Pickering KL, Abdalla A, Ji C, McDonald AG, Franich RA (2003) The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites. Compos Part A Appl Sci 34(10):915–926

    Article  Google Scholar 

  • Pizzi A, Kueny R, Lecoanet F, Massetau B, Carpentier D, Krebs A, Loiseau F, Molina S, Ragoubi M (2009) High resin content natural matrix–natural fibre biocomposites. Ind Crops Prod 30:235–240

    Article  Google Scholar 

  • Placet V (2009) Characterization of the thermo–mechanical behaviour of Hemp fibres intended for the manufacturing of high performance composites. Compos Part A Appl S 40:1111–1118

    Article  Google Scholar 

  • Ponomarev AV, Ershov BG (2014) Radiation-induced high–temperature conversion of cellulose. Molecules 19:16877–16908

    Article  Google Scholar 

  • Popescu MC, Totolin M, Tibirna CM, Sdrobis A, Stevanovic T, Vasile C (2011) Grafting of softwood kraft pulps fibers with fatty acids under cold plasma conditions. Int J Biol Macromol 48:326–335

    Article  Google Scholar 

  • Rachini A, Mougin G, Delalande S, Charmeau JY, Barrès C, Fleury E (2012) Hemp fibers/polypropylene composites by reactive compounding: Improvement of physical properties promoted by selective coupling chemistry. Polym Degrad Stabil 97:1988–1995

    Article  Google Scholar 

  • Ragoubi M, Bienaim D, Molina S, George B, Merlin A (2010) Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof. Ind Crops Prod 31:344–349

    Article  Google Scholar 

  • Ragoubi M, George B, Molina S, Bienaimé D, Merlin A, Hiver JM, Dahoun A (2012) Effect of corona discharge treatment on mechanical and thermal properties of composites based on miscanthus fibres and polylactic acid or polypropylene matrix. Compos Part A Appl S 43:675–685

    Article  Google Scholar 

  • Reulier M, Perrin R, Averous L (2016) Biocomposites based on chemically modified cellulose fibers with renewable fatty–acid–based thermoplastic systems: Effect of different fiber treatments. J Appl Polym Sci Article number 43878

    Google Scholar 

  • Reux F, Verpoest I (eds) (2012) Flax and hemp fibres: a natural solution for the composite industry. JEC Composites, Paris

    Google Scholar 

  • Rozman HD, Tay GS, Kumar RN, Abusamah A, Ismail H, Mohd Ishak ZA (2001) Polypropylene–oil palm empty fruit bunch–glass fibre hybrid composites : a preliminary study on the flexural and tensile properties. Eur Polym J 37:1283–1291

    Article  Google Scholar 

  • Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6(8):2247–2273

    Article  Google Scholar 

  • Sahoo S, Misra M, Mohanty AK (2011) Enhanced properties of lignin–based biodegradable polymer composites using injection moulding process. Compos Part A Appl S 42:1710–1718

    Article  Google Scholar 

  • Sahoo S, Misra M, Mohanty AK (2013) Effect of compatibilizer and fillers on the properties of injection molded lignin–based hydrid green composites. J Appl Polym Sci 4110–4121

    Google Scholar 

  • Sahoo S, Misra M, Mohanty AK (2014) Biocomposites from switchgrass and lignin hydrid and poly(butylene succinate) bioplastic: Studies on reactive compatibilisation and performance evaluation. Macromol Mater Eng 299:178–189

    Article  Google Scholar 

  • Schmid M, Benz A, Stinga C, Samain D (2012) Zeyer KP (2012) Fundamental investigations regarding barrier properties of grafted PVOH layers. Int J Polym Sci 637837(1–637837):6

    Google Scholar 

  • Scrubar WV, Pilla S, Wright ZC, Ryan CA, Greene JP (2012) Mechanisms and impact of fiber–matrix compatibilization techniques on the material characterization of PHBV/oak wood flour engineered biobased composites. Compos Sci Technol 72:708–715

    Article  Google Scholar 

  • Sharif J, Mohamad S, Othman N, Bakaruddin N, Osman H, Güven O (2013) Graft copolymerization of glycidyl methacrylate onto delignified kenaf fibers through pre–irradiation technique. Radiat Phys Chem 91:125–131

    Article  Google Scholar 

  • Sharma HSS (1987) Studies on chemical and enzyme retting of flax on a semi–industrial scale and analysis of the effluents for their physico–chemical components. Int Biodeterior 23:329–342

    Article  Google Scholar 

  • Sivonen H, Maunu SL, Sundholm F, Jamsa S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56:648–654

    Article  Google Scholar 

  • Snijder MHB, Bos HL (2000) Reinforcement of polypropylene by annual plant fibers: optimisation of the coupling agent efficiency. Compos Interface 7:69–75

    Article  Google Scholar 

  • Sombatsompop N, Chaochanchaikul K, Phromchirasuk C, Thongsang S (2003) Effect of wood sawdust content on rheological and structural changes, and thermo–mechanical properties of PVC/sawdust composites. Polym Int 52:1847–1855

    Article  Google Scholar 

  • Sonnier R, Otazaghine B, Viretto A, Apolinario G, Ienny P (2015) Improving the flame retardancy of flax fabrics by radiation grafting of phosphorus compounds. Eur Polym J 68:313–325

    Article  Google Scholar 

  • Stinga NC (2008) Utilisation de la chimie chromatogénique pour la conception et la réalisation de matériaux cellulosiques barrières à l’eau, aux graisses et aux gaz. Thèse de doctorat, Université Joseph Fourier – Grenoble 1, France

    Google Scholar 

  • Takács E, Wojnárovits L, Borsa J, Cs Földváry, Hargittai P, Zöld O (1999) Effect of γ–irradiation on cotton–cellulose. Radiat Phys Chem 55:663–666

    Article  Google Scholar 

  • Takács E, Wojnarovits L, Borsa J, Papp J, Hargittai P, Korecz L (2005) Modification of cotton–cellulose by preirradiation grafting. Nucl Instr and Meth in Phys Res B 236:259–265

    Article  Google Scholar 

  • Thomason JL (ed) (2013) Glass fibre sizings. a review of the scientific literature. Self–published

    Google Scholar 

  • Torres FG, Cubillas ML (2005) Study of the interfacial properties of natural fibre reinforced polyethylene. Polym Test 24:694–698

    Article  Google Scholar 

  • Truss RW, Wood B, Rasch R (2016) Quantitative surface analysis of hemp fibers using XPS, conventional and low voltage in-lens SEM. J Appl Polym Sci 133:1–9

    Article  Google Scholar 

  • Tserki V, Matzinos P, Zafeiropoulos NE, Panayiotou C (2006) Development of biodegradable composites with treated and compatibilized lignocellulosic fibres. J Appl Polym Sci 100(6):4703–4710

    Article  Google Scholar 

  • Twite-Kabamba E, Mechraoui A, Rodrigue D (2009) Rheological properties of polypropylene/hemp fiber composites. Polym Compos 30:1401–1407

    Article  Google Scholar 

  • Van de Velde K, Baetens E (2001) Thermal and mechanical properties of flax fibres as potential composite reinforcement. Macromol Mat Eng 286:342–349

    Article  Google Scholar 

  • Van de Weyenberg I, Ivens J, De Coster A, Kino B, Baetens E, Verpoest I (2003) Influence of processing and chemical treatment of flax fibres on their composites. Compos Sci Technol 63:1241–1246

    Article  Google Scholar 

  • Van de Weyenberg I, Chi Truong T, Vangrimde B, Verpoest I (2006) Improving the properties of UD flax fibre reinforced composites by applying an alkaline fibre treatment. Compos Part A Appl S 37:1368–1376

    Article  Google Scholar 

  • Van Sumere CF (1992) Retting of flax with special reference to enzyme retting. Sharma HSS. The biology and processing of flax. M Publications, Belfast, pp 157–198

    Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl S 41:806–819

    Article  Google Scholar 

  • Yan L, Chouw N, Yuan X (2012) Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. J Reinf Plast Compos 31:425–437

    Article  Google Scholar 

  • Yildiz S (2002) Physical, mechanical, technological and chemical properties of beech and spruce wood treated by heating. PhD dissertation, Karadeniz Technical University, Turkey

    Google Scholar 

  • Yildiz S, Gümüskaya E (2007) The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Build Environ 42:62–67

    Article  Google Scholar 

  • Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface treatments on the properties of poly(lactic acid)/ramie composites. Compos Part A Appl Sci 41(4):499–505

    Article  Google Scholar 

  • Zafeiropoulos NE (ed) (2011) Interface engineering of natural fibre composites for maximum performance. Woodhead Publishing Limited

    Google Scholar 

  • Zafeiropoulos NE, Williams DR, Baillie CA, Matthews FL (2002a) Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part I. Development and investigation of surface treatments. Compos Part A Appl S 33:1083–1093

    Article  Google Scholar 

  • Zafeiropoulos NE, Baillie CA, Hodgkinson JM (2002b) Engineering and characterisation of the interface in flax fibre/polypropylene composite materials, Part II. The effect of surface treatments on the interface, Compos Part A Appl Science 33:1185–1190

    Article  Google Scholar 

  • Zhang H, Kannangara D, Hilder M, Ettl R, Shen W (2007) The role of vapour deposition in the hydrophobization treatment of cellulose fibres using alkyl ketene dimers and alkenyl succinic acid anhydrides. Colloid Surface A 297:203–210

    Article  Google Scholar 

  • Zhang LL, Zhu RY, Chen JY, Chen JM, Feng XX (2008) Seawater–retting treatment of hemp and characterization of bacterial strains involved in the retting process. Process Biochem 43:1195–1201

    Article  Google Scholar 

  • Zhou Q, Greffe L, Baumann MJ, Malmstro E, Teeri TT, Brumer H III (2005) Use of xyloglucan as a molecular anchor for the elaboration of polymers from cellulose surfaces: a general route for the design of biocomposites. Macromolecules 38:3547–3549

    Article  Google Scholar 

  • Zhou M, Li Y, He C, Jin T, Wang K, Fu Q (2014) Interfacial crystallization enhanced interfacial interaction of Poly (butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Compos Sci Technol 91:22–29

    Article  Google Scholar 

  • Zini E, Baiardo M, Armelao L, Scandola M (2004) Biodegradable polyesters reinforced with surface-modified vegetable fibers. Macromolecul Biosci 4:286–295

    Article  Google Scholar 

  • Zini E, Focarete ML, Noda I, Scandola M (2007) Bio-composite of bacterial poly(3–hydroxybutyrate–co–3–hydroxyhexanoate) reinforced with vegetable fibers. Compos Sci Technol 67:2085–2094

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Le Moigne .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le Moigne, N., Otazaghine, B., Corn, S., Angellier-Coussy, H., Bergeret, A. (2018). Modification of the Interface/Interphase in Natural Fibre Reinforced Composites: Treatments and Processes. In: Surfaces and Interfaces in Natural Fibre Reinforced Composites. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-71410-3_3

Download citation

Publish with us

Policies and ethics