Advertisement

Introduction

  • Daniel Borcard
  • François Gillet
  • Pierre Legendre
Chapter
Part of the Use R! book series (USE R)

Abstract

This chapter explains the importance of numerical ecology as well as the interest of using R in this field. It exposes the structure of the book and presents the main data sets used in the applications. Links to the datasets and R scripts are provided. This chapter also explains how to use the book for maximum efficiency.

Bibliography

  1. Borcard, D., Legendre, P.: Environmental control and spatial structure in ecological communities: an example using Oribatid mites (Acari, Oribatei). Environ. Ecol. Stat. 1, 37–61 (1994)CrossRefGoogle Scholar
  2. Borcard, D., Legendre, P., Drapeau, P.: Partialling out the spatial component of ecological variation. Ecology. 73, 1045–1055 (1992)CrossRefGoogle Scholar
  3. Borcard, D., Legendre, P., Avois-Jacquet, C., Tuomisto, H.: Dissecting the spatial structure of ecological data at multiple scales. Ecology. 85, 1826–1832 (2004)CrossRefGoogle Scholar
  4. Dray, S., Legendre, P., Peres-Neto, P.R.: Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006)CrossRefGoogle Scholar
  5. Froese, R., Pauly, D. (Eds): FishBase. World Wide Web electronic publication. www.fishbase.org (2017)
  6. Greenacre, M., Primicerio, R.: Multivariate Analysis of Ecological Data. Fundación BBVA, Bilbao (2013)Google Scholar
  7. Griffith, D.A., Peres-Neto, P.R.: Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology. 87, 2603–2613 (2006)CrossRefGoogle Scholar
  8. Jongman, R.H.G., ter Braak, C.J.F., van Tongeren, O.F.R.: Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  9. Legendre, P.: Species associations: the Kendall coefficient of concordance revisited. J. Agric. Biol. Environ. Stat. 10, 226–245 (2005)CrossRefGoogle Scholar
  10. Legendre, L., Legendre, P.: Écologie Numérique. Masson, Paris and Les Presses de l'Université du Québec, Québec (1979)Google Scholar
  11. Legendre, L., Legendre, P.: Numerical Ecology. Elsevier, Amsterdam (1983)zbMATHGoogle Scholar
  12. Legendre, P., Legendre, L.: Numerical Ecology, 3rd English edn. Elsevier, Amsterdam (2012)Google Scholar
  13. McCune, B., Grace, J.B.: Analysis of Ecological Communities. MjM Software Design, Gleneden Beach (2002)Google Scholar
  14. McGarigal, K., Cushman, S., Stafford, S.: Multivariate Statistics for Wildlife and Ecology Research. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  15. Orlóci, L., Kenkel, N.C.: Introduction to Data Analysis. International Co-operative Publishing House, Burtonsville (1985)Google Scholar
  16. Verneaux, J.: Cours d’eau de Franche-Comté (Massif du Jura). Recherches écologiques sur le réseau hydrographique du Doubs. Essai de biotypologie. Thèse d’état, Besançon, France (1973)Google Scholar
  17. Verneaux, J., Schmitt, A., Verneaux, V., Prouteau, C.: Benthic insects and fish of the Doubs River system: typological traits and the development of a species continuum in a theoretically extrapolated watercourse. Hydrobiologia. 490, 63–74 (2003)CrossRefGoogle Scholar
  18. Wagner, H.H.: Direct multi-scale ordination with canonical correspondence analysis. Ecology. 85, 342–351 (2004)CrossRefGoogle Scholar
  19. Wildi, O.: Data Analysis in Vegetation Ecology, 2nd edn. Wiley-Blackwell, Chichester (2013)CrossRefGoogle Scholar
  20. Zuur, A.F., Ieno, E.N., Smith, G.M.: Analysing Ecological Data. Springer, New York (2007)CrossRefzbMATHGoogle Scholar
  21. Chessel, D., Lebreton, J.D., Yoccoz, N.: Propriétés de l’analyse canonique des correspondances; une illustration en hydrobiologie. Revue de Statistique Appliquée. 35, 55–72 (1987)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Daniel Borcard
    • 1
  • François Gillet
    • 2
  • Pierre Legendre
    • 1
  1. 1.Département de sciences biologiquesUniversité de MontréalMontréalCanada
  2. 2.UMR Chrono-environnementUniversité Bourgogne Franche-ComtéBesançonFrance

Personalised recommendations