Research and Development of Metal-Air Fuel Cells

  • Erdong Wang
  • Zhao Yan
  • Qianfeng Liu
  • Jianxin Gao
  • Min Liu
  • Gongquan Sun
Part of the Lecture Notes in Energy book series (LNEN, volume 63)


Metal-air fuel cells (MAFCs) are a kind of electrochemical devices that can directly convert the chemical energy stored in metals fuels (e.g., Mg, Al or Zn) or their alloys into electricity. Strictly, MAFCs and metal-air batteries are different, that is, the former one can continue to produce electricity by the metal fuels replacement, and the latter one is only one-time use.


  1. 1.
    J.-S. Lee, S. Tai Kim, R. Cao et al., Metal-air batteries with high energy density: Li-air versus Zn-Air. Adv. Energy Mater. 1(1), 34–50 (2011)CrossRefGoogle Scholar
  2. 2.
    M.G. Medeiros, R.R. Bessette, C.M. Deschenes et al., Optimization of the magnesium-solution phase catholyte semi-fuel cell for long duration testing. J. Power Sources 96(1), 236–239 (2001)CrossRefGoogle Scholar
  3. 3.
    T.B. Reddy, Linden’s Handbook of Batteries, 4th edn (McGraw-Hill Companies, New York, 2011)Google Scholar
  4. 4.
    F.R. McLarnon, E.J. Cairns, The secondary alkaline zinc electrode. J. Electrochem. Soc. 138(2), 645–656 (1991)CrossRefGoogle Scholar
  5. 5.
    V. Caramia, B. Bozzini, Materials science aspects of zinc–air batteries: a review. Mater. Renew. Sustain. Energy 3(2), 28 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Fu, Z.P. Cano, M.G. Park et al., Electrically rechargeable Zinc-Air batteries: progress, challenges, and perspectives. Adv. Mater. 29(7), 1604685 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Thomas, N. Birbilis, M.S. Venkatraman, et al., Self-repairing oxides to protect zinc: review, discussion and prospects. Corros. Sci. 69(Supplement C), 11–22 (2013)Google Scholar
  8. 8.
    S. Szpak, C. Gabriel, The Zn-KOH system: the solution-precipitation path for anodic ZnO formation. J. Electrochem. Soc. 126(11), 1914–1923 (1979)CrossRefGoogle Scholar
  9. 9.
    M.B. Liu, G. Cook, N. Yao, Passivation of zinc anodes in KOH electrolytes. J. Electrochem. Soc. 128(8), 1663–1668 (1981)CrossRefGoogle Scholar
  10. 10.
    R.J. Wang, Z.H. Yang, B. Yang et al., Superior cycle stability and high rate capability of Zn-Al-In-hydrotalcite as negative electrode materials for Ni-Zn secondary batteries. J. Power Sources 251, 344–350 (2014)CrossRefGoogle Scholar
  11. 11.
    Z. Zhang, Z. Yang, R. Wang et al., Electrochemical performance of ZnO/SnO2 composites as anode materials for Zn/Ni secondary batteries. Electrochim. Acta 134, 287–292 (2014)CrossRefGoogle Scholar
  12. 12.
    Y.F. Yuan, L.Q. Yu, H.M. Wu et al., Electrochemical performances of Bi based compound film-coated ZnO as anodic materials of Ni-Zn secondary batteries]. Electrochim. Acta 56(11), 4378–4383 (2011)CrossRefGoogle Scholar
  13. 13.
    T. Wang, Z. Yang, J. Huang et al., The electrochemical performances of La2O3-doped ZnO in Ni-Zn secondary batteries. Electrochim. Acta 112, 104–110 (2013)CrossRefGoogle Scholar
  14. 14.
    X.G. Zhang, Secondary batteries—zinc system|zinc electrodes: overview, in Garche, Jürgen. In Encyclopedia of Electrochemical Power Sources, ed. by J. Garche (Elsevier, Amsterdam, 2009), pp. 454–468.
  15. 15.
    X.G. Zhang, Fibrous zinc anodes for high power batteries. J. Power Sources 163(1), 591–597 (2006)CrossRefGoogle Scholar
  16. 16.
    M.N. Masri, A.A. Mohamad, Effect of adding carbon black to a porous zinc anode in a zinc-air battery. J. Electrochem. Soc. 160(4), A715–A721 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Fu, D.U. Lee, F.M. Hassan et al., Flexible high-energy polymer-electrolyte-based rechargeable zinc-air batteries. Adv. Mater. 27(37), 5617–5622 (2015)CrossRefGoogle Scholar
  18. 18.
    Q. Tian, X. Guo, Manufacturing microporous foam zinc materials with high porosity by electrodeposition. J. Wuhan Univ. Technol. Mater. Sci. Ed. 26(5), 843–846 (2011)Google Scholar
  19. 19.
    Z. Yan, E. Wang, L. Jiang et al., Superior cycling stability and high rate capability of three-dimensional Zn/Cu foam electrodes for zinc-based alkaline batteries. RSC Adv. 5(102), 83781–83787 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Cheng, Q. Lai, X. Li et al., Zinc-nickel single flow batteries with improved cycling stability by eliminating zinc accumulation on the negative electrode. Electrochim. Acta 145, 109–115 (2014)CrossRefGoogle Scholar
  21. 21.
    S. Smedley, X.G. Zhang, Secondary batteries—metal-air systems|zinc–air: hydraulic recharge, in In Encyclopedia of Electrochemical Power Sources, ed. by J. Garche (Elsevier, Amsterdam, 2009), pp. 393–403.
  22. 22.
    Q. Li, N.J. Bjerrum, Aluminum as anode for energy storage and conversion: a review. J. Power Sources 110(1), 1–10 (2002)CrossRefGoogle Scholar
  23. 23.
    D. Egan, C.P. De León, R. Wood et al., Developments in electrode materials and electrolytes for aluminium–air batteries. J. Power Sources 236, 293–310 (2013)CrossRefGoogle Scholar
  24. 24.
    M. Doche, F. Novel-Cattin, R. Durand et al., Characterization of different grades of aluminum anodes for aluminum/air batteries. J. Power Sources 65(1–2), 197–205 (1997)CrossRefGoogle Scholar
  25. 25.
    Y.-J. Cho, I.-J. Park, H.-J. Lee et al., Aluminum anode for aluminum–air battery—Part I: Influence of aluminum purity. J. Power Sources 277, 370–378 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Nestoridi, D. Pletcher, R.J.K. Wood et al., The study of aluminium anodes for high power density Al/air batteries with brine electrolytes. J. Power Sources 178(1), 445–455 (2008)CrossRefGoogle Scholar
  27. 27.
    C. Tuck, J. Hunter, G. Scamans, The electrochemical behavior of Al-Ga alloys in alkaline and neutral electrolytes. J. Electrochem. Soc. 134(12), 2970–2981 (1987)CrossRefGoogle Scholar
  28. 28.
    W. Wilhelmsen, T. Arnesen, Ø. Hasvold et al., The electrochemical behaviour of Al In alloys in alkaline electrolytes. Electrochim. Acta 36(1), 79–85 (1991)CrossRefGoogle Scholar
  29. 29.
    E.J. Rudd, D.W. Gibbons, High energy density aluminum/oxygen cell. J. Power Sources 47(3), 329–340 (1994)CrossRefGoogle Scholar
  30. 30.
    J.T.B. Gundersen, A. Aytaç, J.H. Nordlien et al., Effect of heat treatment on electrochemical behaviour of binary aluminium model alloys. Corros. Sci. 46(3), 697–714 (2004)CrossRefGoogle Scholar
  31. 31.
    I.-J. Park, S.-R. Choi, J.-G. Kim, Aluminum anode for aluminum-air battery–Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution. J. Power Sources 357, 47–55 (2017)CrossRefGoogle Scholar
  32. 32.
    P.W. Jeffrey, W. Halliop, F.N. Smith, Aluminum Anode Alloy (1988)Google Scholar
  33. 33.
    J.A. Hunter, G.M. Scamans, W.B. O’callaghan, et al., Aluminium Batteries (1991)Google Scholar
  34. 34.
    C. Shu, E. Wang, L. Jiang et al., Studies on palladium coated titanium foams cathode for Mg–H2O2 fuel cells. J. Power Sources 208, 159–164 (2012)CrossRefGoogle Scholar
  35. 35.
    C.Z. Shu, E.D. Wang, L.H. Jiang et al., High performance cathode based on carbon fiber felt for magnesium-air fuel cells. Int. J. Hydrogen Energy 38(14), 5885–5893 (2013)CrossRefGoogle Scholar
  36. 36.
    Q. Liu, Z. Yan, E. Wang et al., A high-specific-energy magnesium/water battery for full-depth ocean application. Int. J. Hydrogen Energy 42(36), 23045–23053 (2017)CrossRefGoogle Scholar
  37. 37.
    K. Gusieva, C.H.J. Davies, J.R. Scully et al., Corrosion of magnesium alloys: the role of alloying. Int. Mater. Rev. 60(3), 169–194 (2015)CrossRefGoogle Scholar
  38. 38.
    T.R. Zhang, Z.L. Tao, J. Chen, Magnesium-air batteries: from principle to application. Mater. Horiz. 1(2), 196–206 (2014)CrossRefGoogle Scholar
  39. 39.
    H.Q. Xiong, H.L. Zhu, J. Luo et al., Effects of heat treatment on the discharge behavior of Mg-6wt.%Al-1wt.%Sn alloy as anode for magnesium-air batteries. J. Mater. Eng. Perform. 26(6), 2901–2911 (2017)CrossRefGoogle Scholar
  40. 40.
    H.Q. Xiong, K. Yu, X.A. Yin et al., Effects of microstructure on the electrochemical discharge behavior of Mg-6 wt%Al-1 wt%Sn alloy as anode for Mg-air primary battery. J. Alloy. Compd. 708, 652–661 (2017)CrossRefGoogle Scholar
  41. 41.
    R.-C. Zeng, L. Sun, Y.-F. Zheng et al., Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: the influence of microstructural features. Corros. Sci. 79, 69–82 (2014)CrossRefGoogle Scholar
  42. 42.
    W. Xu, N. Birbilis, G. Sha et al., A high-specific-strength and corrosion-resistant magnesium alloy. Nat. Mater. (2015). Google Scholar
  43. 43.
    H. Fukuda, J.A. Szpunar, K. Kondoh et al., The influence of carbon nanotubes on the corrosion behaviour of AZ31B magnesium alloy. Corros. Sci. 52(12), 3917–3923 (2010)CrossRefGoogle Scholar
  44. 44.
    G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1(1), 11–33 (1999)CrossRefGoogle Scholar
  45. 45.
    N.G. Wang, R.C. Wang, Y. Feng et al., Discharge and and corrosion behaviour of Mg-Li-Al-Ce-Y-Zn alloy as the anode for Mg-air battery. Corros. Sci. 112, 13–24 (2016)CrossRefGoogle Scholar
  46. 46.
    Y. Li, H. Dai, Recent advances in zinc-air batteries. Chem. Soc. Rev. 43(15), 5257–5275 (2014)CrossRefGoogle Scholar
  47. 47.
  48. 48.
    M. Maja, C. Orecchia, M. Strano et al., Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries. Electrochim. Acta 46(2), 423–432 (2000)CrossRefGoogle Scholar
  49. 49.
    S.-W. Eom, C.-W. Lee, M.-S. Yun et al., The roles and electrochemical characterizations of activated carbon in zinc air battery cathodes. Electrochim. Acta 52(4), 1592–1595 (2006)CrossRefGoogle Scholar
  50. 50.
    K. Tomantschger, R. Findlay, M. Hanson et al., Degradation modes of alkaline fuel cells and their components. J. Power Sources 39(1), 21–41 (1992)CrossRefGoogle Scholar
  51. 51.
    L. Maiche (1878)Google Scholar
  52. 52.
    H.Q. Li, G.Q. Sun, N. Li et al., Design and preparation of highly active Pt-Pd/C catalyst for the oxygen reduction reaction. J. Phys. Chem. C 111(15), 5605–5617 (2007)CrossRefGoogle Scholar
  53. 53.
    G.L. Li, L.H. Jiang, Q. Jiang et al., Preparation and characterization of PdxAgy/C electrocatalysts for ethanol electrooxidation reaction in alkaline media. Electrochim. Acta 56(22), 7703–7711 (2011)CrossRefGoogle Scholar
  54. 54.
    L.Z. Yuan, Z. Yan, L.H. Jiang et al., Gold-iridium bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. J. Energy Chem. 25(5), 805–810 (2016)CrossRefGoogle Scholar
  55. 55.
    L.Z. Yuan, L.H. Jiang, T.R. Zhang et al., Electrochemically synthesized freestanding 3D nanoporous silver electrode with high electrocatalytic activity. Catal. Sci. Technol. 6(19), 7163–7171 (2016)CrossRefGoogle Scholar
  56. 56.
    D.U. Lee, P. Xu, Z.P. Cano et al., Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries. J. Mater. Chem. A 4(19), 7107–7134 (2016)CrossRefGoogle Scholar
  57. 57.
    J.S. Guo, A. Hsu, D. Chu et al., Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J. Phys. Chem. C 114(10), 4324–4330 (2010)CrossRefGoogle Scholar
  58. 58.
    J.J. Han, N. Li, T.Y. Zhang, Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. J. Power Sources 193(2), 885–889 (2009)CrossRefGoogle Scholar
  59. 59.
    V. Neburchilov, H. Wang, J.J. Martin et al., A review on air cathodes for zinc–air fuel cells. J. Power Sources 195(5), 1271–1291 (2010)CrossRefGoogle Scholar
  60. 60.
    J. Liu, J. Liu, W. Song et al., The role of electronic interaction in the use of Ag and Mn3O4 hybrid nanocrystals covalently coupled with carbon as advanced oxygen reduction electrocatalysts. J. Mater. Chem. A 2(41), 17477–17488 (2014)CrossRefGoogle Scholar
  61. 61.
    Y. Wang, X. Ma, L. Lu et al., Carbon supported MnOx–Co3O4 as cathode catalyst for oxygen reduction reaction in alkaline media. Int. J. Hydrogen Energy 38(31), 13611–13616 (2013)CrossRefGoogle Scholar
  62. 62.
    J. Lamminen, J. Kivisaari, M.J. Lampinen et al., Preparation of air electrodes and long run tests. J. Electrochem. Soc. 138(4), 905–908 (1991)CrossRefGoogle Scholar
  63. 63.
    J. Liu, L.H. Jiang, Q.W. Tang et al., Coupling effect between cobalt oxides and carbon for oxygen reduction reaction. ChemSusChem 5(12), 2315–2318 (2012)CrossRefGoogle Scholar
  64. 64.
    Y. Liang, Y. Li, H. Wang et al., Co(3)O(4) nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011)CrossRefGoogle Scholar
  65. 65.
    Y. Liang, H. Wang, P. Diao et al., Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 134(38), 15849–15857 (2012)CrossRefGoogle Scholar
  66. 66.
    L.Z. Gu, L.H. Jiang, X.N. Li et al., A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells. Chin. J. Catal. 37(4), 539–548 (2016)CrossRefGoogle Scholar
  67. 67.
    S.J. Guo, S. Zhang, S.H. Sun, Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. 52(33), 8526–8544 (2013)CrossRefGoogle Scholar
  68. 68.
    M. Ferrandon, A.J. Kropf, D.J. Myers et al., Multitechnique characterization of a polyaniline-iron-carbon oxygen reduction catalyst. J. Phys. Chem. C 116(30), 16001–16013 (2012)CrossRefGoogle Scholar
  69. 69.
    X. Zhang, Secondary batteries—zinc system|zinc electrodes: overview, in Encyclopedia of Electrochemical Power Sources (2009)Google Scholar
  70. 70.
    X.-Y. Liu, X.-Z. Xu, Mesoscopic numerical computation model of air-diffusion electrode of metal/air batteries. Appl. Math. Mech. 34(5), 571–576 (2013)CrossRefGoogle Scholar
  71. 71.
    S. Zaromb, The use and behavior of aluminum anodes in alkaline primary batteries. J. Electrochem. Soc. 109(12), 1125–1130 (1962)CrossRefGoogle Scholar
  72. 72.
    R.J. Coin, Metal hydroxide crystallized and filter (1991)Google Scholar
  73. 73.
    T. Zhang, Z. Tao, J. Chen, Magnesium-air batteries: from principle to application. Mater. Horiz. 1(2), 196–206 (2014)CrossRefGoogle Scholar
  74. 74.
    T.B. Reddy, Linden’s Handbook of batteries, 4th edn. (2011)Google Scholar
  75. 75.
    M. Mokhtar, M.Z.M. Talib, E.H. Majlan, et al., Recent developments in materials for aluminum–air batteries: a review. J. Ind. Eng. Chem. 32(Supplement C), 1–20 (2015)Google Scholar
  76. 76.
    S. Sathyanarayana, N. Munichandraiah, A new magnesium—air cell for long-life applications. J. Appl. Electrochem. 11(1), 33–39 (1981)CrossRefGoogle Scholar
  77. 77.
    K.F. Blurton, A.F. Sammells, Metal/air batteries: their status and potential—a review. J. Power Sources 4(4), 263–279 (1979)CrossRefGoogle Scholar
  78. 78.
    C.-C. Yang, S.-J. Lin, Alkaline composite PEO–PVA–glass-fibre-mat polymer electrolyte for Zn–air battery. J. Power Sources 112(2), 497–503 (2002)CrossRefGoogle Scholar
  79. 79.
    Z. Zhang, C. Zuo, Z. Liu, et al., All-solid-state Al–air batteries with polymer alkaline gel electrolyte. J. Power Sources, 251(Supplement C), 470–475 (2014)Google Scholar
  80. 80.
    D.D. Macdonald, C. English, Development of anodes for aluminium/air batteries—solution phase inhibition of corrosion. J. Appl. Electrochem. 20(3), 405–417 (1990)CrossRefGoogle Scholar
  81. 81.
    R.S.M. Patnaik, S. Ganesh, G. Ashok et al., Heat management in aluminium/air batteries: sources of heat. J. Power Sources 50(3), 331–342 (1994)CrossRefGoogle Scholar
  82. 82.
    A.M. Abdel-Gaber, E. Khamis, H. Abo-Eldahab et al., Novel package for inhibition of aluminium corrosion in alkaline solutions. Mater. Chem. Phys. 124(1), 773–779 (2010)CrossRefGoogle Scholar
  83. 83.
    N.A.F. Al-Rawashdeh, A.K. Maayta, Cationic surfactant as corrosion inhibitor for aluminum in acidic and basic solutions. Anti-Corros. Methods Mater. 52(3), 160–166 (2005)CrossRefGoogle Scholar
  84. 84.
    Z. Sun, H. Lu, Q. Hong et al., Evaluation of an alkaline electrolyte system for Al-Air battery. Ecs Electrochem. Lett. 4(12), A133–A136 (2015)CrossRefGoogle Scholar
  85. 85.
    D. Gelman, I. Lasman, S. Elfimchev, et al., Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications. J. Power Sources, 285(Supplement C), 100–108 (2015)Google Scholar
  86. 86.
    Y. Nie, J. Gao, E. Wang, et al., An effective hybrid organic/inorganic inhibitor for alkaline aluminum-air fuel cells. Electrochimica Acta, 248(Supplement C), 478–485 (2017)Google Scholar
  87. 87.
    J.S. Lee, T.K. Sun, R. Cao et al., Metal-air batteries with high energy density: Li–Air versus Zn–Air. Adv. Energy Mater. 1(1), 34–50 (2011)CrossRefGoogle Scholar
  88. 88.
    J. Goldstein, I. Brown, B. Koretz, New developments in the Electric Fuel Ltd. zinc/air system. J. Power Sources 80(1–2), 171–179 (1999)CrossRefGoogle Scholar
  89. 89.
    T. Huh, G. Savaskan, J.W. Evans, Further studies of a zinc-air cell employing a packed bed anode part II: regeneration of zinc particles and electrolyte by fluidized bed electrodeposition. J. Appl. Electrochem. 22(10), 916–921 (1992)CrossRefGoogle Scholar
  90. 90.
    G. Savaskan, T. Huh, J.W. Evans, Further studies of a zinc-air cell employing a packed bed anode part I: discharge. J. Appl. Electrochem. 22(10), 909–915 (1992)CrossRefGoogle Scholar
  91. 91.
    S.I. Smedley, X.G. Zhang, A regenerative zinc–air fuel cell. J. Power Sources 165(2), 897–904 (2007)CrossRefGoogle Scholar
  92. 92.
    X.G. Zhang, Secondary batteries—zinc system|zinc electrodes: overview. Encycl. Electrochem. Power Sources 15(7), 454–468 (2009)CrossRefGoogle Scholar
  93. 93.
    A.V. Ilyukhina, B.V. Kleymenov, A.Z. Zhuk, Development and study of aluminum-air electrochemical generator and its main components. J. Power Sources, 342 (2017)Google Scholar
  94. 94.
  95. 95.
    Ø. Hasvold, H. Henriksen, E. Melv˦R, et al., Sea-water battery for subsea control systems. J. Power Sources 65(1), 253–261 (1997)Google Scholar
  96. 96.
    L.F. Li, Hybridized magnesium air fuel cell with Ni-Zn battery or electrochemical capacitor as the ideal energy source for USV sensor payloads (2004)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dalian National Laboratory for Clean EnergyDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianP.R. China
  2. 2.University of Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations