Advertisement

System Design and Performance in Alkaline Direct Ethanol Fuel Cells

  • Yinshi Li
Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 63)

Abstract

Fuel cells that convert the chemical energy stored in a fuel into an electrical energy by electrochemical reactions have been recognized as one of the most promising technologies for the clean energy industry of the future, especially for alkaline direct ethanol fuel cells (DEFCs), because ethanol is less toxic than methanol and can be massively produced from agricultural products or biomass, in addition to the advantage of high specific energy and quicker electro-kinetics of both the ethanol oxidation reaction (EOR) and oxygen reduction reaction (ORR) in alkaline media. A considerable amount of effort has been devoted to the development of alkaline membranes and electro-catalystsin alkaline DEFCs, including synthesis of anion-exchange membrane and electro-catalysts, and the mechanism study of both the anodic EOR and cathodic ORR. For given materials, the improvement of the cell performance, however, depends mainly on the system design. This chapter provides a brief review of the development of alkaline DEFCs from the point of view of the system.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51776156), Key Project of National Natural Science Foundation of China (51436007), 111 Project (B16038), and Shenzhen Science and Technology Foundation.

References

  1. 1.
    B.C. Steele, A. Heinzel, Nature 414, 345–352 (2001)CrossRefGoogle Scholar
  2. 2.
    T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, J. Electrochem. Soc. 138, 2334–2342 (1991)CrossRefGoogle Scholar
  3. 3.
    L. An, T.S. Zhao, J. Power Sources 341, 199–211 (2017)CrossRefGoogle Scholar
  4. 4.
    E.P. Murray, T. Tsai, S.A. Barnett, Nature 400, 649–651 (1999)CrossRefGoogle Scholar
  5. 5.
    R. Borup, J. Meyers, B. Pivovar, Chem. Rev. 107, 3904–3951 (2007)CrossRefGoogle Scholar
  6. 6.
    Y.S. Li, Y. Feng, X.D. Sun, Y.L. He, Angew. Chem. Int. Ed. 56, 5734–5737 (2017)Google Scholar
  7. 7.
    V. Mehta, J.S. Cooper, J. Power Sources 114, 32–53 (2003)CrossRefGoogle Scholar
  8. 8.
    T. Hibino, A. Hashimoto, T. Inoue, Science 288, 2031–2033 (2000)CrossRefGoogle Scholar
  9. 9.
    L. An, R. Chen, J. Power Sources 329, 484–501 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Tang, J. Liu, N.L. Torad, Nano Today 9, 305–323 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Boudghene Stambouli, E. Traversa, Fuel Cells, an alternative to standard sources of energy. Renew. Sustain. Energy Rev. 6, 295–304 (2002)CrossRefGoogle Scholar
  12. 12.
    S.K. Kamarudin, F. Achmad, W.R.W. Daud, Int. J. Hydrogen Energy 34, 6902–6916 (2009)CrossRefGoogle Scholar
  13. 13.
    V. Neburchilov, J. Martin, H. Wang, J. Power Sources 169, 221–238 (2007)CrossRefGoogle Scholar
  14. 14.
    S.P.S. Badwal, S. Giddey, A. Kulkarni, J. Goel, S. Basu, Appl. Energy 145, 80–103 (2015)CrossRefGoogle Scholar
  15. 15.
    L. An, T.S. Zhao, Y.S. Li, Renew. Sust. Energy Rev. 50, 1462–1468 (2015)CrossRefGoogle Scholar
  16. 16.
    T.S. Zhao, Y.S. Li, S.Y. Shen, Front. Energy Power Eng. China 4, 443–458 (2010)CrossRefGoogle Scholar
  17. 17.
    T.C. Deivaraj, J.Y. Lee, J. Power Sources 142, 43–49 (2005)CrossRefGoogle Scholar
  18. 18.
    C. Bianchini, P.K. Shen, Chem. Rev. 109, 4183–4206 (2009)CrossRefGoogle Scholar
  19. 19.
    M.Z.F. Kamarudin, S.K. Kamarudin, M.S. Masdar, Int. J. Hydrogen Energy 38, 9438–9453 (2013)CrossRefGoogle Scholar
  20. 20.
    J.R. Varcoe, R.C.T. Slade, Fuel Cells 5, 187–200 (2005)CrossRefGoogle Scholar
  21. 21.
    E. Antolini, E.R. Gonzalez, J. Power Sources 195, 3431–3450 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Beyhan, J.M. Léger, F. Kadırgan, Appl. Catal. B-Environ. 130, 305–313 (2013)CrossRefGoogle Scholar
  23. 23.
    E.H. Yu, K. Scott, R.W. Reeve, Fuel Cells 3, 168–176 (2003)CrossRefGoogle Scholar
  24. 24.
    V. Rao, C. Hariyanto, U. Cremers, Stimming. Fuel Cells 5, 417–423 (2007)CrossRefGoogle Scholar
  25. 25.
    E. Antolini, J. Power Sources 170, 1–12 (2007)CrossRefGoogle Scholar
  26. 26.
    J.R. Varcoe, J.P. Kizewski, D.M. Halepoto, S.D. Poynton, R.C.T. Slade, F. Zhao, Encyclopedia of Electrochemical Power Sources (2009), pp. 329–343Google Scholar
  27. 27.
    J. Xu, P. Gao, T.S. Zhao, Energy Environ. Sci. 5, 5333–5339 (2012)CrossRefGoogle Scholar
  28. 28.
    Q. He, Q. Li, S. Khene, J. Phys. Chem. C 117, 8697–8707 (2013)CrossRefGoogle Scholar
  29. 29.
    A.H.N. Rao, R.L. Thankamony, H.J. Kim, S. Nam, T.H. Kim, Polymer 54, 111–119 (2013)CrossRefGoogle Scholar
  30. 30.
    J.R. Varcoe, P. Atanassov, D.R. Dekel, Energy Environ. Sci. 7, 3135–3191 (2014)CrossRefGoogle Scholar
  31. 31.
    A.B. Delpeuch, F. Maillard, M. Chatenet, Appl. Catal. B-Environ. 181, 672–680 (2016)CrossRefGoogle Scholar
  32. 32.
    A.E. Pérez, R. Ribadeneira, J. Electrochem. Soc. 791, 185–195 (2017)Google Scholar
  33. 33.
    Y.S. Li, Y.L. He, W.W. Yang, J. Power Sources 278, 569–573 (2015)CrossRefGoogle Scholar
  34. 34.
    Y.S. Li, T.S. Zhao, Z.X. Liang, J. Power Sources 190, 223–229 (2009)CrossRefGoogle Scholar
  35. 35.
    L. An, T.S. Zhao, X.L. Zhou, L. Wei, X.H. Yan, RSC Adv. 4, 65031–65034 (2014)CrossRefGoogle Scholar
  36. 36.
    Y.S. Li, H. Wu, Y.L. He, Y.L. Liu, L. Jin, J. Power Sources 287, 75–80 (2015)CrossRefGoogle Scholar
  37. 37.
    Y.S. Li, T.S. Zhao, Z.X. Liang, J. Power Sources 187, 387–392 (2009)CrossRefGoogle Scholar
  38. 38.
    T.S. Zhao, R. Chen, W.W. Yang, C. Xu, J. Power Sources 191, 185–202 (2009)CrossRefGoogle Scholar
  39. 39.
    T.S. Zhao, C. Xu, R. Chen, W.W. Yang, Prog. Energy Combust. Sci. 35, 275–292 (2009)CrossRefGoogle Scholar
  40. 40.
    T.S. Zhao, W.W. Yang, R. Chen, Q.X. WU. J. Power Sources 195, 3451–3462 (2010)CrossRefGoogle Scholar
  41. 41.
    H. Yanagi, K. Fukuta, ECS Trans. 16, 257–262 (2008)CrossRefGoogle Scholar
  42. 42.
    K. Fukuta, H. Inoue, S. Watanabe, H. Yanagi, ECS Trans. 19, 23–27 (2009)CrossRefGoogle Scholar
  43. 43.
    Y.S. Li, Int. J. Hydrogen Energy 41, 3600–3604 (2016)CrossRefGoogle Scholar
  44. 44.
    M. Roca-Ayats, M.D. Roca-Moreno, M.V. Martínez-Huerta, Int. J. Hydrogen Energy 41, 19656–19663 (2016)CrossRefGoogle Scholar
  45. 45.
    X. Gao, H. Yu, J. Jia, RSC Adv. 7, 19153–19161 (2017)CrossRefGoogle Scholar
  46. 46.
    Y.S. Li, X.D. Sun, Y. Feng, Chemsuschem 10, 2135–2139 (2017)Google Scholar
  47. 47.
    J. Qi, N. Benipal, H. Wang, D.J. Chadderdon, Y. Jiang, W. Wei, Y.H. Hu, W.Z. Li, Chemsuschem 8, 1147–1150 (2015)CrossRefGoogle Scholar
  48. 48.
    M. Rahimi, L. Zhu, K.L. Kowalski, J. Power Sources 342, 956–963 (2017)CrossRefGoogle Scholar
  49. 49.
    J. Ponce-Gonzalez, D. Whelligan, L. Wang, J. Electrochem. Soc. 38, 2527 (2016)Google Scholar
  50. 50.
    Y. He, L. Wu, J. Pan, J. Membrane Sci. 504, 47–54 (2016)CrossRefGoogle Scholar
  51. 51.
    T.P. Pandey, H.N. Sarode, Y. Yang, J. Electrochem. Soc. 163, H513–H520 (2016)CrossRefGoogle Scholar
  52. 52.
    V.J. Bharath, R. Jervis, J. Millichamp, Int. J. Hydrogen Energy 42, 6243–6249 (2017)CrossRefGoogle Scholar
  53. 53.
    E. Korzhova, N. Pismenskaya, D. Lopatin, J. Membrane Sci. 500, 161–170 (2016)CrossRefGoogle Scholar
  54. 54.
    J. Hou, X. Wang, Y. Liu, J. Membrane Sci. 518, 282–288 (2016)CrossRefGoogle Scholar
  55. 55.
    J.R. Varcoe, R.C.T. Slade, E.L.H. Yee, S.D. Poynton, D.J. Driscoll, J. Power Sources 173, 194–199 (2007)CrossRefGoogle Scholar
  56. 56.
    E. Agel, J. Bouet, J.F. Fauvarque, J. Power Sources 101, 267–274 (2001)CrossRefGoogle Scholar
  57. 57.
    Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, Electrochim. Acta 54, 2203–2208 (2009)CrossRefGoogle Scholar
  58. 58.
    H.Y. Hou, G.Q. Sun, R.H. He, Z. Wu, B.Y. Sun, J. Power Sources 182, 95–99 (2008)CrossRefGoogle Scholar
  59. 59.
    S.Y. Shen, T.S. Zhao, J.B. Xu, Y.S. Li, J. Power Sources 195, 1001–1006 (2010)CrossRefGoogle Scholar
  60. 60.
    V. Bambagioni, C. Bianchini, A. Marchionni, J. Filippi, F. Vizza, J. Teddy, P. Serp, M. Zhiani, J. Power Sources 190, 241–251 (2009)CrossRefGoogle Scholar
  61. 61.
    N. Fujiwara, Z. Siroma, S. Yamazaki, T. Ioroi, H. Senoh, K. Yasuda, J. Power Sources 185, 621–626 (2008)CrossRefGoogle Scholar
  62. 62.
    C. Bianchini, V. Bambagioni, J. Filippi, A. Marchionni, F. Vizza, P. Bert, A. Tampucci, Electrochem. Commun. 11, 1077–1080 (2009)CrossRefGoogle Scholar
  63. 63.
    L.H. Jiang, G.Q. Sun, S.G. Sun, J.G. Liu, S.H. Tang, H.Q. Li, B. Zhou, Q. Xin, Electrochim. Acta 50, 5384–5389 (2005)CrossRefGoogle Scholar
  64. 64.
    A.D. Modestov, M.R. Tarasevich, A.Y. Leykin, V.Y. Filimonov, J. Power Sources 188, 502–506 (2009)CrossRefGoogle Scholar
  65. 65.
    Y.S. Li, Y.L. He, W.W. Yang, Int. J. Hydrogen Energy 38, 13427–13433 (2013)CrossRefGoogle Scholar
  66. 66.
    M.S. Wilson, S. Gottesfeld, J. Appl. Electrochem. 22, 1–7 (1992)CrossRefGoogle Scholar
  67. 67.
    S.C. Thomas, X. Ren, S. Gottesfeld, J. Electrochem. Soc. 146, 4354–4359 (1999)CrossRefGoogle Scholar
  68. 68.
    Z.X. Liang, T.S. Zhao, J. Prabhuram, Electrochim. Acta 51, 6412–6418 (2006)CrossRefGoogle Scholar
  69. 69.
    S.F. Lu, J. Pan, A.B. Huang, L. Zhuang, J.T. Lu, PNAS 105, 1–4 (2008)CrossRefGoogle Scholar
  70. 70.
    S. Gu, R. Cai, T. Luo, Z.W. Chen, M.W. Sun, Y. Liu, G.H. He, Y.S. Yan, Angew. Chem. Int. Ed. 48, 1–5 (2009)CrossRefGoogle Scholar
  71. 71.
    J.R. Varcoe, R.C.T. Slade, E.L.H. Yee, Chem. Commun. 1428–1429 (2006)Google Scholar
  72. 72.
    E.E. Switzer, T.S. Olson, A.K. Datye, P. Atanassov, M.R. Hibbs, C. Fujimoto, C.J. Cornelius, Electrochim. Acta 55, 3404–3408 (2010)CrossRefGoogle Scholar
  73. 73.
    K. Miyazaki, T. Abe, K. Nishio, H. Nakanishi, Z. Ogumi, J. Power Sources 195, 6500–6503 (2010)CrossRefGoogle Scholar
  74. 74.
    M. Taei, E. Havakeshian, F. Abedi, Int. J. Hydrogen Energy 41, 13575–13582 (2016)CrossRefGoogle Scholar
  75. 75.
    M. Taei, E. Havakeshian, H. Salavati, RSC Adv. 6, 27293–27300 (2016)CrossRefGoogle Scholar
  76. 76.
    K.D. Dewoolkar, P.D. Vaidya, Int. J. Hydrogen Energy 41, 6094–6106 (2016)CrossRefGoogle Scholar
  77. 77.
    Y.S. Li, T.S. Zhao, R. Chen, J. Power Sources 196, 133–139 (2011)CrossRefGoogle Scholar
  78. 78.
    Y.S. Li, T.S. Zhao, J.B. Xu, S.Y. Shen, W.W. Yang, J. Power Sources 196, 1802–1807 (2011)CrossRefGoogle Scholar
  79. 79.
    S.Q. Song, Z.X. Liang, W.J. Zhou, G.Q. Sun, Q. Xin, V. Stergipoulos, P. Tsialaras, J. Power Sources 145, 495–501 (2005)CrossRefGoogle Scholar
  80. 80.
    T.V. Reshetenko, H.T. Kim, H. Lee, M. Jang, H.J. Kweon, J. Power Sources 160, 925–932 (2006)CrossRefGoogle Scholar
  81. 81.
    Y.S. Li, T.S. Zhao, Int. J. Hydrogen Energy 36, 7707–7713 (2011)CrossRefGoogle Scholar
  82. 82.
    R. Chetty, K. Scott, Electrochim. Acta 52, 4073–4081 (2007)CrossRefGoogle Scholar
  83. 83.
    E. Verlato, S. Cattarin, N. Comisso, A. Gambirasi, Electrocatal. 3, 48–58 (2012)CrossRefGoogle Scholar
  84. 84.
    Y.L. Wang, Y.Q. Zhao, C.L. Xu, D.D. Zhao, M.W. Xu, Z.X. Su, H.L. Li, J. Power Sources 195, 6496–6499 (2010)CrossRefGoogle Scholar
  85. 85.
    Y.S. Li, Y.L. He, RSC Adv. 4, 16879–16884 (2014)CrossRefGoogle Scholar
  86. 86.
    Y.S. Li, T.S. Zhao, Int. J. Hydrogen Energy 37, 15334–15338 (2012)CrossRefGoogle Scholar
  87. 87.
    L. An, T.S. Zhao, R. Chen, Q.X. Wu, J. Power Sources 196, 6219–6222 (2011)CrossRefGoogle Scholar
  88. 88.
    S.S. Jang, V. Molinero, T. Çaǧın, J. Phys. Chem. B 108, 3149–3157 (2004)CrossRefGoogle Scholar
  89. 89.
    C.W. Lin, K.C. Fan, R. Thangamuthu, J. Membrane Sci. 278, 437–446 (2006)CrossRefGoogle Scholar
  90. 90.
    R.C. McDonald, C.K. Mittelsteadt, E.L. Thompson, Fuel cells 4, 208–213 (2004)CrossRefGoogle Scholar
  91. 91.
    A.C. Fernandes, E.A. Ticianelli, J. Power Sources 193, 547–554 (2009)CrossRefGoogle Scholar
  92. 92.
    J. Peron, A. Mani, X. Zhao, J. Membrane Sci. 356, 44–51 (2010)CrossRefGoogle Scholar
  93. 93.
    A.M. Bartrom, J.L. Haan, J. Power Sour. 214, 68–74 (2012)CrossRefGoogle Scholar
  94. 94.
    L. An, T.S. Zhao, Energy Environ. Sci. 4, 2213–2217 (2011)CrossRefGoogle Scholar
  95. 95.
    L. An, T.S. Zhao, Q.X. Wu, L. Zeng, Int. J. Hydrogen Energy 37, 14536–14542 (2012)CrossRefGoogle Scholar
  96. 96.
    Y.S. Li, T.S. Zhao, Int. J. Hydrogen Energy 37, 4413–4421 (2012)CrossRefGoogle Scholar
  97. 97.
    T.N. Danks, R.C.T. Slade, J.R. Varcoe, J. Mater. Chem. 12, 3371–3373 (2002)CrossRefGoogle Scholar
  98. 98.
    L. An, T.S. Zhao, L. Zeng, X.H. Yan, Int. J. Hydrogen Energy 39, 2320–2324 (2014)CrossRefGoogle Scholar
  99. 99.
    W.J. Zhou, S.Q. Song, W.Z. Li, Z.H. Zhou, G.Q. Sun, Q. Xin, S. Douvartzides, P. Tsiakaras, J. Power Sources 140, 50–58 (2005)CrossRefGoogle Scholar
  100. 100.
    L. An, T.S. Zhao, J.B. Xu, Int. J. Hydrogen Energy 36, 13089–13095 (2011)CrossRefGoogle Scholar
  101. 101.
    Y.S. Li, Y.L. He, J. Electrochem. Soc. 163, F663–F667 (2016)CrossRefGoogle Scholar
  102. 102.
    L. An, T.S. Zhao, Int. J. Hydrogen Energy 36, 9994–9999 (2011)CrossRefGoogle Scholar
  103. 103.
    Y.S. Li, T.S. Zhao, Int. J. Hydrogen Energy 41, 20336–20342 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Thermo-Fluid Science and Engineering of MOESchool of Energy and Power Engineering, Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations