Mathematical Modeling of Alkaline Anion Exchange Membrane Fuel Cells

Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 63)

Abstract

The modeling work on the alkaline anion exchange membrane (AEM) fuel cell has been greatly facilitated by the rapid development of AEM fuel cell in recent years. Mathematical modeling has been widely recognized as a powerful tool to quantify the physical and electrochemical processes inside the fuel cells. In this study, modeling researches on the AEM fuel cell fed by various fuels have been summarized and discussed. General modeling formulation for AEM fuel cell has been comprehensively introduced. The relevant modeling results with various cell design parameters and operational conditions are revealed and analyzed accordingly. Moreover, the comparison of the operating characteristics of AEM fuel cells fueled by hydrogen (H) and liquid alcohols is also carried out in this study.

Nomenclature

.

a

Water activity, anode

Anode

Anode

A

Geometric area of the fuel cell (m2)

c

Mole concentration (mol m−3), cathode

Cathode

Cathode

D

Diffusion coefficient (m2 s−1)

E

Voltage (V)

EW

Equivalent weight of membrane

F

Faraday’s contant (96487.0 C mol−1)

G

Free energy (J mol−1)

h

Latent heat, J kg−1

J

Current density (A cm−2)

J0

Volumetric exchange current density (A m−3)

k

Electrical conductivity (S m−1)

K

Permeability (m2)

m

Membrane

M

Relative mole mass (kg mol−1)

n

Moles of electrons production per mole of reactants consumption

\(n_{d}\)

Electroosmosis coefficient (H2O/ OH)

N

The change of moles of gas (mol), the flux of the liquid water in the fuel cell component (mol m−2 s−1)

p

Pressure (Pa)

poro

Porous media

r

Porous radius (m)

ri

Order of the reaction

R

Ideal gas constant (8.314 J K−1 mol−1) internal resistance of cell \(\left( {{\Omega} \,{\text{m}}^{2} } \right)\) electrochemical reaction rate (A m−3)

Re

Reynolds number

RH

Relative humidity

s

Volume fraction

S

Entropy (J mol−1 K−1), Source term (kg m−3 s−1, mol m−3 s−1)

ST

Stoichiometric ratio

T

Temperature (K)

\(\overrightarrow {u}\)

Velocity (m s−1)

x, y, z

Coordinate position (m)

X

Mole fraction

Y

Mass fraction

Greek symbols

α

Apparent transfer coefficient

β

Liquid water volume fraction supplied for cathode inlet

γ

Activity coefficient, water phase change rate (s−1)

δ

Thickness (m)

ε

Porosity

ζ

Water transfer rate (s−1)

η

Internal resistance of cell \(\left( {{\Omega} \,{\text{m}}^{2} } \right)\), voltage loss

θ

Contact angle (°)

ι

Interfacial drag coefficient

λ

Water content in polymer exchange membrane

μ

Dynamic viscosity (kg m−1 s−1)

ρ

Mass density (kg m−3) electrical resistivity (Ω m)

σ

Conductivity (S m−1)

φ

Potential (V)

ω

Volume fraction of ionomer in catalyst layer

Superscript and subscripts

0

Proper value standard condition

a

Anode

act

Activation loss parameter

aver

Average

AAEM-CL

Interface between the membrane and catalyst layer

c

Cathode,capillary pressure

ch

Flow channel

CL

Catalyst layer

e

Electrode

eff

Effective parameter

equi

Equilibrium

evap

Evaporation

EOD

Electro-osmotic drag

g

Gas

GDL

Gas diffusion layer

H2

Hydrogen

H2O

Water

i

The composition of the gas mixture

lh

Latent heat

lq

Liquid water

ion

Electrical

m

Membrane

me

Methanol

mw

Membrane water

mv

Methanol vapor

m-l

Membrane water to liquid (vice versa)

ohm

Ohmic parameter

O2

Oxygen

P

Plate

r

Reversible

ref

Reference condition

s

Electrode

sat

Saturation state

total

Total

vap

Water vapor

v-l

Vapor to liquid (vice versa)

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 51622606), and the Key Program of Natural Science Foundation of Tianjin (China) (Grant No. 16JCZDJC30800).

References

  1. 1.
    T. Zhou, R. Shao, S. Chen, X. He, J. Qiao, J. Zhang, A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells. J. Power Sources 293, 946–975 (2015)CrossRefGoogle Scholar
  2. 2.
    G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 377, 1–35 (2011)Google Scholar
  3. 3.
    I. Kruusenberg, L. Matisen, Q. Shah, A.M. Kannan, K. Tammeveski, Non-platinum cathode catalysts for alkaline membrane fuel cells. Int. J. Hydrogen Energy 37, 4406–4412 (2012)CrossRefGoogle Scholar
  4. 4.
    Y.S. Kang, Y. Heo, P. Kim, S.J. Yoo, Preparation and characterization of Cu–N–C electrocatalysts for oxygen reduction reaction in alkaline anion exchange membrane fuel cells. J. Ind. Eng. Chem. 52, 35–41 (2017)CrossRefGoogle Scholar
  5. 5.
    S. Carrion-Satorre, M. Montiel, R. Escudero-Cid, J.L.G. Fierro, Performance of carbon-supported palladium and palladiumeruthenium catalysts for alkaline membrane direct ethanol fuel cells. Int. J. Hydrogen Energy 41, 8954–8962 (2016)CrossRefGoogle Scholar
  6. 6.
    S. Markgraf, M. Hörenz, T. Schmiel, W. Jehle, J. Lucas, N. Henn, Alkaline fuel cells running at elevated temperature for regenerative fuel cell system applications in spacecrafts. J. Power Sources 201, 236–242 (2012)CrossRefGoogle Scholar
  7. 7.
    I. Verhaert, G. Mulder, M.D. Paepe, Evaluation of an alkaline fuel cell system as a micro-CHP. Energ. Convers. Manage. 126, 434–445 (2016)CrossRefGoogle Scholar
  8. 8.
    H.-W. Wu, A review of recent development: transport and performance modeling of PEM fuel cells. Appl. Energy 165, 81–106 (2016)CrossRefGoogle Scholar
  9. 9.
    R.K.A. Rasheed, L. Quan, C. Zhang, S.H. Chan, A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). Int. J. Hydrogen Energy 42, 3142–3165 (2017)Google Scholar
  10. 10.
    D.M. Fadzillah, M.I. Rosli, M.Z.M. Talib, S.K. Kamarudin, W.R.W. Daud, Review on microstructure modelling of a gas diffusion layer for proton exchange membrane fuel cells. Renew. Sustain. Energy Rev. 77, 1001–1009 (2017)CrossRefGoogle Scholar
  11. 11.
    B. Timurkutluk, M.D. Mat, A review on micro-level modeling of solid oxide fuel cells. Int. J. Hydrogen Energy 41, 9968–9981 (2016)Google Scholar
  12. 12.
    S.A. Hajimolana, M.A. Hussain, W.M.A.W. Daud, M. Soroush, A. Shamiri, Mathematical modeling of solid oxide fuel cells: A review. Renew. Sustain. Energy Rev. 15, 1893–1917 (2011)Google Scholar
  13. 13.
    M. Peksen, Numerical thermomechanical modelling of solid oxide fuel cells. Prog. Energy Combust. Sci. 48, 1–20 (2015)CrossRefGoogle Scholar
  14. 14.
    I. Verhaert, M.D. Paepe, G. Mulder, Thermodynamic model for an alkaline fuel cell. J. Power Sources 193, 233–240 (2009)Google Scholar
  15. 15.
    G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 377, 1–35 (2011)Google Scholar
  16. 16.
    T. Zhou, R. Shao, S. Chen, X. He, J. Qiao, J. Zhang, A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells. J. Power Sources 293, 946–975 (2015)CrossRefGoogle Scholar
  17. 17.
    K. Jiao, P. He, Q. Du, Y. Yin, Three-dimensional multiphase modeling of alkaline anion exchange membrane fuel cell. Int. J. Hydrogen Energy 39, 5981–5995 (2014)Google Scholar
  18. 18.
    H. Deng, D. Wang, R. Wang, X. Xie, Y. Yin, Q. Du, K. Jiao, Effect of electrode design and operating condition on performance of hydrogen alkaline membrane fuel cell. Appl. Energy 183, 1272–1278 (2016)Google Scholar
  19. 19.
    B.S. Machado, N. Chakraborty, P.K. Das, Influences of flow direction, temperature and relative humidity on the performance of a representative anion exchange membrane fuel cell: A computational analysis. Int. J. Hydrogen Energy 42, 6310–6323 (2017)Google Scholar
  20. 20.
    D.R. Dekel, I.G. Rasin, M. Page, S. Brandon, Steady state and transient simulation of anion exchange membrane fuel cells. J. Power Sources.  https://doi.org/10.1016/j.jpowsour.2017.07.012
  21. 21.
    E.M. Sommer, L.S. Martins, J.V.C. Vargas, J.E.F.C. Gardolinski, J.C. Ordonez, C.E.B. Marino, Alkaline membrane fuel cell (AMFC) modeling and experimental validation. J. Power Sources 213, 16–30 (2012)CrossRefGoogle Scholar
  22. 22.
    S. Huo, H. Deng, Y. Chang, K. Jiao, Water management in alkaline anion exchange membrane fuel cell anode. Int. J. Hydrogen Energy 37, 18389–18402 (2012)CrossRefGoogle Scholar
  23. 23.
    H. Deng, S. Huo, Y. Chang, Y. Zhou, K. Jiao, Transient analysis of alkaline anion exchange membrane fuel cell anode. Int. J. Hydrogen Energy 38, 6509–6525 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Jiao, S. Huo, M. Zu, D. Jiao, J. Chen, Q. Du, An analytical model for hydrogen alkaline anion exchange membrane fuel cell. Int. J. Hydrogen Energy 40, 3300–3312 (2015)Google Scholar
  25. 25.
    H.S. Shiau, I.V. Zenyuk, A.Z. Weber, Water management in an alkaline-exchange-membrane fuel cell. ECS Trans. 69(17), 985–994 (2015)CrossRefGoogle Scholar
  26. 26.
    Y.-J. Sohn, J.I. Choi, K. Kim, Numerical analysis on water transport in alkaline anion exchange membrane fuel cells. Electrochemistry 83(2), 80–83 (2015)CrossRefGoogle Scholar
  27. 27.
    R.B. Kaspar, M.P. Letterio, J.A. Wittkopf, K. Gong, S. Gu, Y. Yan, Manipulating water in high-performance hydroxide exchange membrane fuel cells through asymmetric humidification and wetproofing. J. Electrochem. Soc. 162(6), F483–F488 (2015)CrossRefGoogle Scholar
  28. 28.
    H. Deng, D. Wang, X. Xie, Y. Zhou, Y. Yin, Q. Du, K. Jiao, Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization. Renew. Energy 91, 166–177 (2016)Google Scholar
  29. 29.
    S. Huo, J.W. Park, P. He, D. Wang, K. Jiao, Analytical modeling of liquid saturation jump effect for hydrogen alkaline anion exchange membrane fuel cell. Int. J. Heat Mass Tran. 112, 891–902 (2017)Google Scholar
  30. 30.
    S. Peng, J. Gong, X. Xu, P.-C. Sui, S. Lu, Y. Xiang, Numerical and experimental analyses on deviated concentration loss with alkaline anion-exchange membrane fuel cells. J. Phys. Chem. C 119(43), 24276–24281 (2015)Google Scholar
  31. 31.
    H. Deng, D. Jiao, M. Zu, J. Chen, K. Jiao, X. Huang, Modeling of passive alkaline membrane direct methanol fuel cell. Electrochim. Acta 154, 430–446 (2015)CrossRefGoogle Scholar
  32. 32.
    B. Wang, Y. Zhou, Q. Du, Y. Yin, K. Jiao, Transient investigation of passive alkaline membrane direct methanol fuel cell. Appl. Therm. Eng. 100, 1245–1258 (2016)Google Scholar
  33. 33.
    C. Weinzierl, U. Krewera, Model-based analysis of water management at anode of alkaline direct methanol fuel cells. Chem. Eng. Sci. 143, 181–193 (2016)CrossRefGoogle Scholar
  34. 34.
    C. Weinzierl, U. Krewer, Model-based analysis of water management in alkaline direct methanol fuel cells. J. Power Sources 268, 911–921 (2014)CrossRefGoogle Scholar
  35. 35.
    H. Deng, J. Chen, K. Jiao, X. Huang, An analytical model for alkaline membrane direct methanol fuel cell. Int. J. Heat Mass Tran. 74, 376–390 (2014)Google Scholar
  36. 36.
    L. An, Z.H. Chai, L. Zeng, P. Tan, T.S. Zhao, Mathematical modeling of alkaline direct ethanol fuel cells. Int. J. Hydrogen Energy 38, 14067–14075 (2013)CrossRefGoogle Scholar
  37. 37.
    H. Bahrami, A. Faghri, Multi-layer membrane model for mass transport in a direct ethanol fuel cell using an alkaline anion exchange membrane. J. Power Sources 218, 286–296 (2012)CrossRefGoogle Scholar
  38. 38.
    W.W. Yang, M.Y. Lu, Y.L. He, Performance study of an alkaline direct ethanol fuel cell with a reduced two-dimensional mass transport model. Int. J. Hydrogen Energy 41, 20693–20708 (2016)CrossRefGoogle Scholar
  39. 39.
    S. Abdullah, S.K. Kamarudin, U.A. Hasran, M.S. Masdar, W.R.W. Daud, Electrochemical kinetic and mass transfer model for direct ethanol alkaline fuel cell (DEAFC). J. Power Sources 320, 111–119 (2016)CrossRefGoogle Scholar
  40. 40.
    S. Abdullah, S.K. Kamarudin, U.A. Hasran, M.S. Masdar, W.R.W. Daud, Modeling and simulation of a direct ethanol fuel cell: An overview. J. Power Sources 262, 401–406 (2014)Google Scholar
  41. 41.
    X. Han, D.J. Chadderdon, J. Qi, L. Xin, W. Li, W. Zhou, Numerical analysis of anion-exchange membrane direct glycerol fuel cells under steady state and dynamic operations. Int. J. Hydrogen Energy 39, 19767–19779 (2014)CrossRefGoogle Scholar
  42. 42.
    L. An, R. Chen, Mathematical modeling of direct formate fuel cells. Appl. Therm. Eng. 124, 232–240 (2017)CrossRefGoogle Scholar
  43. 43.
    A.A. Kulikovsky, Analytical Modeling of Fuel cells, 1st edn. (Elsevier, 2010)Google Scholar
  44. 44.
    D.A.G. Bruggeman, The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotopic substances. Ann. Phys. 24, 636–664 (1935)Google Scholar
  45. 45.
    Q. Duan, S. Ge, C.-Y. Wang, Water uptake, ionic conductivity and swelling properties of anion-exchange membrane. J. Power Sources 243, 773–778 (2013)CrossRefGoogle Scholar
  46. 46.
    F.A.L. Dullien, Porous Media: fluid Transport and Pore Structure, 2nd ed. (Academic Press, San Diego, 1992)Google Scholar
  47. 47.
    K.S. Udell, Heat transfer in porous media considering phase change and capillarity-the heat pipe effect. Int. J. Heat Mass Tran. 28(2), 485–495 (1985)Google Scholar
  48. 48.
    E.H. Yu, K. Scott, Development of direct methanol alkaline fuel cells using anion exchange membranes. J. Power Sources 137, 248–256 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of EnginesTianjin UniversityTianjinChina

Personalised recommendations