Advertisement

Electrocatalysts for Hydrogen Peroxide Reduction Used in Fuel Cells

  • Yusuke Yamada
Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 63)

Abstract

Fuel cells technology has attracted much attention owing to their high conversion efficiency in chemical energy to electrical energy with simple structures, clean emissions, insignificant scale effect, etc. Various types of fuel cells were constructed by employing metal, metal oxide and metal complexes as cathodes, where electrochemical H2O2 reduction proceeds. Molecular oxygen (O2) often used as an oxidant for contracting fuel cells is abundant and free of charge, however, oxygen reduction involves four electrons and four protons to form two water molecules that is hard reaction from the kinetic point of view. H2O2 produced by two-electron reduction of O2 is more easily reduced to water by further two-electron reduction (H2O2 + 2H+ + 2e = 2H2O; E o = 1.78 V vs NHE) than O2 by four-electron reduction (O2 + 4H+ + 4e = 2H2O; E o = 1.23 V vs NHE) from both kinetic and thermodynamic points of views. Not only active but also selective cathodes for two-electron reduction of H2O2 should be developed to achieve high power fuel cells using H2O2 as an oxidant. Herein, suitable catalysts, which are made of metal, metal oxide and metal complexes, for two-electron reduction of H2O2 are reviewed.

Notes

Acknowledgements

The authors gratefully acknowledge the contributions of their collaborators and coworkers cited in references, and support by funds from the Ministry of Education, Culture, Sports, Science and Technology, Japan. ENEOS hydrogen trust funding.

References

  1. 1.
    A.J. Bard, R. Parsons, J. Jordan (ed.), Standard Potentials in Aqueous Solution (Marcel Dekker, New York, 1985)Google Scholar
  2. 2.
    R.S. Disselkamp, Energy Fuels 22, 2771 (2008)CrossRefGoogle Scholar
  3. 3.
    A.E. Sanli, Int. J. Energy Res. 37, 1488 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Fukuzumi, Y. Yamada, K.D. Karlin, Electrochim. Acta 82, 493 (2012)CrossRefGoogle Scholar
  5. 5.
    S. Fukuzumi, Y. Yamada, ChemElectroChem 3, 1978 (2016)Google Scholar
  6. 6.
    Y. Isaka, K. Oyama, Y. Yamada, T. Suenobu, S. Fukuzumi, Catal. Sci. Technol. 6, 681 (2016)Google Scholar
  7. 7.
    Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed. 53, 13454–13459 (2014)CrossRefGoogle Scholar
  8. 8.
    K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi. Nat. Commun. 7 (2016)Google Scholar
  9. 9.
    S. Hasegawa, K. Shimotani, K. Kishi, H. Watanabe, Electrochem. Solid-State Lett. 8, A119 (2005)CrossRefGoogle Scholar
  10. 10.
    E. Kjeang, A.G. Brolo, D.A. Harrington, N. Djilali, D. Sinton, J. Electrochem. Soc. 154, B1220 (2007)CrossRefGoogle Scholar
  11. 11.
    W.W. Huo, Y. Zhou, H.F. Zhang, Z.Q. Zou, H. Yang, Int. J. Electrochem. Sci. 8, 4827 (2013)Google Scholar
  12. 12.
    W. Sangarunlert, S. Sukchai, A. Pongtornkulpanich, A. Nathakaranakule, T. Luschtinetz. J. Fuel Cell Sci. Technol. 8 (2011)Google Scholar
  13. 13.
    D.M.F. Santos, C.A.C. Sequeira, J. Electrochem. Soc. 157, B13 (2010)CrossRefGoogle Scholar
  14. 14.
    D.M.F. Santos, A. Balciunaite, L. Tamasauskaite-Tamasiunaite, A. Zabielaite, A. Jagminiene, I. Stankeviciene, A. Naujokaitis, E. Norkus, J. Electrochem. Soc. 163, F1553 (2016)CrossRefGoogle Scholar
  15. 15.
    Y.G. Wang, P. He, H.S. Zhou, Energy Environ. Sci. 3, 1515 (2010)CrossRefGoogle Scholar
  16. 16.
    A.E. Sanli, M.L. Aksu, B.Z. Uysal, Int. J. Hydrogen Energy 36, 8542 (2011)CrossRefGoogle Scholar
  17. 17.
    J. Kim, B. Jang, T. Lee, S. Kwon, Int. J. Tubo Jet-Engines 32, 291 (2015)Google Scholar
  18. 18.
    N. Luo, G.H. Miley, R. Gimlin, R. Burton, J. Rusek, F. Holcomb, J. Propul. Power 24, 583 (2008)CrossRefGoogle Scholar
  19. 19.
    T.H. Oh, B. Jang, S. Kwon, Int. J. Hydrogen Energy 39, 6977 (2014)CrossRefGoogle Scholar
  20. 20.
    D.J. Brodrecht, J.J. Rusek, Appl. Energy 74, 113 (2003)CrossRefGoogle Scholar
  21. 21.
    A. Serov, C. Kwak, Appl. Catal. B 98, 1 (2010)CrossRefGoogle Scholar
  22. 22.
    X.L. Yan, F.H. Meng, Y. Xie, J.G. Liu, Y. Ding. Sci. Rep. 2 (2012)Google Scholar
  23. 23.
    S.J. Lao, H.Y. Qin, L.Q. Ye, B.H. Liu, Z.P. Li, J. Power Sources 195, 4135 (2010)CrossRefGoogle Scholar
  24. 24.
    F. Guo, K. Cheng, K. Ye, G.L. Wang, D.X. Cao, Electrochim. Acta 199, 290 (2016)CrossRefGoogle Scholar
  25. 25.
    F. Yang, K. Cheng, X.L. Liu, S. Chang, J.L. Yin, C.Y. Du, L. Du, G.L. Wang, D.X. Cao, J. Power Sources 217, 569 (2012)CrossRefGoogle Scholar
  26. 26.
    F. Yang, K. Cheng, Y.H. Mo, L.Q. Yu, J.L. Yin, G.L. Wang, D.X. Cao, J. Power Sources 217, 562 (2012)CrossRefGoogle Scholar
  27. 27.
    F. Yang, K. Cheng, X. Xue, J.L. Yin, G.L. Wang, D.X. Cao, Electrochim. Acta 107, 194 (2013)CrossRefGoogle Scholar
  28. 28.
    F. Yang, K. Cheng, X. Xiao, J.L. Yin, G.L. Wang, D.X. Cao, J. Power Sources 245, 89 (2014)CrossRefGoogle Scholar
  29. 29.
    K. Ye, F. Guo, Y.Y. Gao, D.M. Zhang, K. Cheng, W.P. Zhang, G.L. Wang, D.X. Cao, J. Power Sources 300, 147 (2015)CrossRefGoogle Scholar
  30. 30.
    E.G. Dow, R.R. Bessette, G.L. Seeback, C. Marsh-Orndorff, H. Meunier, J. VanZee, M.G. Medeiros, J. Power Sources 65, 207 (1997)CrossRefGoogle Scholar
  31. 31.
    R.R. Bessette, J.M. Cichon, D.W. Dischert, E.G. Dow, J. Power Sources 80, 248 (1999)CrossRefGoogle Scholar
  32. 32.
    R.R. Bessette, M.G. Medeiros, C.J. Patrissi, C.M. Deschenes, C.N. LaFratta, J. Power Sources 96, 240 (2001)CrossRefGoogle Scholar
  33. 33.
    M.G. Medeiros, R.R. Bessette, C.M. Deschenes, C.J. Patrissi, L.G. Carreiro, S.P. Tucker, D.W. Atwater, J. Power Sources 136, 226 (2004)CrossRefGoogle Scholar
  34. 34.
    C.J. Patrissi, R.R. Bessette, Y.K. Kim, C.R. Schumacher, J. Electrochem. Soc. 155, B558 (2008)CrossRefGoogle Scholar
  35. 35.
    C.Z. Shu, E.D. Wang, L.H. Jiang, Q.W. Tang, G.Q. Sun, J. Power Sources 208, 159 (2012)CrossRefGoogle Scholar
  36. 36.
    S.I. Yamazaki, Z. Siroma, H. Senoh, T. Loroi, N. Fujiwara, K. Yasuda, J. Power Sources 178, 20 (2008)CrossRefGoogle Scholar
  37. 37.
    Y. Yamada, Y. Fukunishi, S. Yamazaki, S. Fukuzumi, Chem. Commun. 46, 7334 (2010)CrossRefGoogle Scholar
  38. 38.
    W. Yang, S. Yang, W. Sun, G. Sun, Q. Xin, J. Power Sources 160, 1420 (2006)CrossRefGoogle Scholar
  39. 39.
    W.Q. Yang, S.H. Yang, W. Sun, G.Q. Sun, Q. Xin, Electrochim. Acta 52, 9 (2006)CrossRefGoogle Scholar
  40. 40.
    K. Liu, C.A. Wang, J.T. Ma, Rsc Adv. 4, 18894 (2014)CrossRefGoogle Scholar
  41. 41.
    T. Lei, Y.M. Tian, G.L. Wang, J.L. Yin, Y.Y. Gao, Q. Wen, D.X. Cao, Fuel Cells 11, 431 (2011)CrossRefGoogle Scholar
  42. 42.
    S.X. Zhuang, S.Q. Liu, J.B. Zhang, F.Y. Tu, H.X. Huang, K.L. Huang, Y.H. Li. Acta Phys.-Chim. Sin. 28, 355 (2012)Google Scholar
  43. 43.
    D.M.F. Santos, T.F.B. Gomes, B. Sljukic, N. Sousa, C.A.C. Sequeira, F.M.L. Figueiredo, Electrochim. Acta 178, 163 (2015)CrossRefGoogle Scholar
  44. 44.
    H.J. Wu, C. Wang, Z.X. Liu, Z.Q. Mao, Int. J. Hydrogen Energy 35, 2648 (2010)CrossRefGoogle Scholar
  45. 45.
    A.A. Karyakin, E.E. Karyakina, L. Gorton, J. Electroanal. Chem. 456, 97 (1998)CrossRefGoogle Scholar
  46. 46.
    A.A. Karyakin, E.E. Karyakina, L. Gorton, Electrochem. Commun. 1, 78 (1999)CrossRefGoogle Scholar
  47. 47.
    A. Eftekhari, Talanta 55, 395 (2001)CrossRefGoogle Scholar
  48. 48.
    A.A. Karyakin, Electroanalysis 13, 813 (2001)CrossRefGoogle Scholar
  49. 49.
    G. Zhao, J.J. Feng, Q.L. Zhang, S.P. Li, H.Y. Chen, Chem. Mater. 17, 3154 (2005)CrossRefGoogle Scholar
  50. 50.
    S.M.S. Kumar, K.C. Pillai, Electrochem. Commun. 8, 621 (2006)CrossRefGoogle Scholar
  51. 51.
    J.D. Qiu, H.Z. Peng, R.P. Liang, J. Li, X.H. Xia, Langmuir 23, 2133 (2007)CrossRefGoogle Scholar
  52. 52.
    H. Yu, Q.L. Sheng, J.B. Zheng, Electrochim. Acta 52, 4403 (2007)CrossRefGoogle Scholar
  53. 53.
    A.P. Baioni, M. Vidotti, P.A. Fiorito, S.I.C. de Toressi, J. Electroanal. Chem. 622, 219 (2008)CrossRefGoogle Scholar
  54. 54.
    H. Ding, L. Zhao, Y. Li, X. He, Asian J. Chem. 20, 2327 (2008)Google Scholar
  55. 55.
    F. Jia, C. Yu, J. Gong, L. Zhang, J. Solid State Electrochem. 12, 1567 (2008)CrossRefGoogle Scholar
  56. 56.
    R. Ojani, J.B. Raoof, S. Fathi, J. Solid State Electrochem. 13, 837 (2009)CrossRefGoogle Scholar
  57. 57.
    D. Iveković, A. Gajović, M. Čeh, B. Pihlar, Electroanalysis 22, 2202 (2010)CrossRefGoogle Scholar
  58. 58.
    E. Jin, X. Lu, L. Cui, D. Chao, C. Wang, Electrochim. Acta 55, 7230 (2010)CrossRefGoogle Scholar
  59. 59.
    A. Lisowska-Oleksiak, M. Wilamowska, V. Jasulaitiene, Electrochim. Acta 56, 3626 (2011)CrossRefGoogle Scholar
  60. 60.
    T.H. Tsai, T.W. Chen, S.M. Chen, Int. J. Electrochem. Sci. 6, 4628 (2011)Google Scholar
  61. 61.
    H. Yang, R. Yuan, Y. Chai, H. Su, Y. Zhuo, W. Jiang, Z. Song, Electrochim. Acta 2011, 56 (1973)Google Scholar
  62. 62.
    L. Chen, X. Wang, X. Zhang, H. Zhang, J. Mater. Chem. 22, 22090 (2012)CrossRefGoogle Scholar
  63. 63.
    S.-M. Chen, C.-H. Wang, K.-C. Lin, Int. J. Electrochem. Sci. 7, 405 (2012)Google Scholar
  64. 64.
    D. Iveković, H.V. Trbić, R. Peter, M. Petravić, M. Čeh, B. Pihlar, Electrochim. Acta 78, 452 (2012)CrossRefGoogle Scholar
  65. 65.
    R. Jin, L. Li, Y. Lian, X. Xu, F. Zhao, Anal. Methods 4, 2704 (2012)CrossRefGoogle Scholar
  66. 66.
    H. Mao, J. Song, Q. Zhang, D. Liu, N. Gong, Y. Li, Q. Wu, F. Verpoort, X.M. Song, Nanotechnology 24, 215601 (2013)Google Scholar
  67. 67.
    F. Doroftei, T. Pinteala, A. Arvinte, Microchim. Acta 181, 111 (2014)CrossRefGoogle Scholar
  68. 68.
    J.G. Mendes Castro Jr., G.M. Mota Ferreira, F.G. de Oliveira, F.S. Damos, R.D.C. Silva Luz. J. Electroanal. Chem. 732, 93 (2014)Google Scholar
  69. 69.
    K. Gong, J. Colloid Interface Sci. 449, 80 (2015)CrossRefGoogle Scholar
  70. 70.
    E.Y. Jomma, N. Bao, S.-N. Ding, Curr. Anal. Chem. 12, 512 (2016)CrossRefGoogle Scholar
  71. 71.
    E. Karpova, E.E. Karyakina, A.A. Karyakin, RSC Adv. 6, 103328 (2016)CrossRefGoogle Scholar
  72. 72.
    D.M.F. Santos, P.G. Saturnino, R.F.M. Lobo, C.A.C. Sequeira, J. Power Sources 208, 131 (2012)CrossRefGoogle Scholar
  73. 73.
    S.A.M. Shaegh, N.T. Nguyen, S.M.M. Ehteshami, S.H. Chan, Energy Environ. Sci. 5, 8225 (2012)CrossRefGoogle Scholar
  74. 74.
    Y. Yamada, M. Yoneda, S. Fukuzumi, Chem. Eur. J. 19, 11733 (2013)Google Scholar
  75. 75.
    Y. Yamada, M. Yoneda, S. Fukuzumi, Inorg. Chem. 53, 1272 (2014)CrossRefGoogle Scholar
  76. 76.
    R.K. Raman, A.K. Shukla, J. Appl. Electrochem. 35, 1157 (2005)CrossRefGoogle Scholar
  77. 77.
    Y. Yamada, S. Yoshida, T. Honda, S. Fukuzumi, Energy Environ. Sci. 4, 2822 (2011)CrossRefGoogle Scholar
  78. 78.
    K. Mahesh, R. Balaji, K.S. Dhathathreyan, Ionics 21, 2603 (2015)CrossRefGoogle Scholar
  79. 79.
    J. Hernandez, J. Solla-Gullon, E. Herrero, J.M. Feliu, A. Aldaz, J. Nanosci. Nanotechnol. 9, 2256 (2009)CrossRefGoogle Scholar
  80. 80.
    X. Yang, Y. Ouyang, F. Wu, Y. Hu, Y. Ji, Z. Wu, Sens. Actuators, B 238, 40 (2017)CrossRefGoogle Scholar
  81. 81.
    Y.M. Tian, J.C. Huang, Y. Gao, D.X. Cao, G.L. Wang, J. Solid State Electrochem. 2012, 16 (1901)Google Scholar
  82. 82.
    S.J. Amirfakhri, P.A. Pascone, J.L. Meunier, D. Berk, J. Catal. 323, 55 (2015)CrossRefGoogle Scholar
  83. 83.
    R.Z. Zhang, W. Chen, Biosens. Bioelectron. 89, 249 (2017)CrossRefGoogle Scholar
  84. 84.
    A.Z. Ernst, S. Zoladek, K. Wiaderek, J.A. Cox, A. Kolary-Zurowska, K. Miecznikowski, P.J. Kulesza, Electrochim. Acta 53, 3924 (2008)CrossRefGoogle Scholar
  85. 85.
    H. Hamidi, E. Shams, B. Yadollahi, F.K. Esfahani, Electrochim. Acta 54, 3495 (2009)CrossRefGoogle Scholar
  86. 86.
    C. Wang, Y. Hua, Y. Tong, Electrochim. Acta 55, 6755 (2010)CrossRefGoogle Scholar
  87. 87.
    J.Y. Liu, L. Cheng, S.J. Dong, Electroanalysis 14, 569 (2002)CrossRefGoogle Scholar
  88. 88.
    D. Martel, A. Kuhn, Electrochim. Acta 45, 1829 (2000)Google Scholar
  89. 89.
    H. Khoshro, H.R. Zare, R. Vafazadeh, Chin. J. Catal. 35, 247 (2014)CrossRefGoogle Scholar
  90. 90.
    H. Bagheri, E. Ranjbari, M. Amiri-Aref, A. Hajian, Y.H. Ardakani, S. Amidi, Biosens. Bioelectron. 85, 814 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Chemistry and Bioengineering, Graduate School of EngineeringOsaka City UniversitySumiyoshi, OsakaJapan

Personalised recommendations