Skip to main content

Electrocatalysts and Mechanisms of Hydrogen Oxidation in Alkaline Media for Anion Exchange Membrane Fuel Cells

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Energy ((LNEN,volume 63))

Abstract

The anion exchange membrane fuel cell (AEM-FC) can potentially be much cheaper than the state of the art proton exchange membrane fuel cells (PEM-FC) for two main reasons. Firstly, the alkaline electrolyte enables the use of non-platinum electrocatalysts and secondly ultra-acid resistant fuel cell components (e.g. current collectors and bipolar plates) are not required. Some scientific and technological challenges must be overcome before AEM-FCs can compete with PEM-FCs. One of the most difficult is the poor kinetics of the hydrogen oxidation reaction (HOR) at high pHs. Consequently, developing non Pt HOR catalysts with high activity is key for improving the power densities of Pt-free fuel cells. In this chapter, we start by considering the mechanisms of the HOR in alkaline media and then review performance data recently reported for both PGM and non PGM HOR electrocatalysts. Emphasis is given to materials that have been used in complete AEM-FC tests.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.K. Debe, Nat. 486, 43–51 (2012)

    Article  Google Scholar 

  2. O. Groger, H.A. Gasteiger, J.P. Suchsland, J. Electrochem. Soc. 162, A2605–A2622 (2015)

    Article  Google Scholar 

  3. A. Burke, L. Zhu, Res. Transp. Econ. 52, 65–71 (2015)

    Article  Google Scholar 

  4. Fuel Cell Technologies Office Multi-year Research, Development and Demonstration Plan Section 3.4 (U.S. DOE, 2017), https://energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf

  5. B.D. James, J.M. Moton, W.G. Colella, Office of energy efficiency and renewable energy US DOE, Mass Production Cost Estimation of Direct H 2 PEM Fuel Cell Systems for Transportation Applications 2014 Update, (U.S. DOE, 2014), https://energy.gov/sites/prod/files/2014/11/f19/fcto_sa_2013_pemfc_transportation_cost_analysis.pdf

  6. M. Piana, M. Boccia, A. Filpi, E. Flammia, H.A. Miller, M. Orsini, F. Salusti, S. Santiccioli, F. Ciardelli, A. Pucci, J. Power Sources 195, 5875–5881 (2010)

    Article  Google Scholar 

  7. J.R. Varcoe, R.C.T. Slade, Fuel Cells 5, 187–200 (2005)

    Article  Google Scholar 

  8. Y.J. Sa, C. Park, H.Y. Jeong, S.H. Park, Z. Lee, K.T. Kim, G.G. Park, S.H. Joo, Angew. Chem. Int. Edit. 53, 4102–4106 (2014)

    Article  Google Scholar 

  9. D. Dekel, in Encyclopedia of Applied Electrochemistry, eds. by G. Kreysa, K.-I. Ota, R. Savinell (Springer, New York, 2014), pp. 26–33. https://doi.org/10.1007/978-1-4419-6996-5_181

  10. D. Dekel, in Encyclopedia of Applied Electrochemistry, eds. by G. Kreysa, K.-i. Ota, R. Savinell (Springer New York, 2014), pp. 33–45. https://doi.org/10.1007/978-1-4419-6996-5_524

  11. J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M.A. Hickner, P.A. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, T.W. Xu, L. Zhuang, Energy Environ. Sci. 7, 3135–3191 (2014)

    Article  Google Scholar 

  12. Y. Nie, L. Li, Z.D. Wei, Chem. Soc. Rev. 44, 2168–2201 (2015)

    Article  Google Scholar 

  13. G. Wu, P. Zelenay, Accounts Chem. Res. 46, 1878–1889 (2013)

    Article  Google Scholar 

  14. M.H. Shao, Q.W. Chang, J.P. Dodelet, R. Chenitz, Chem. Rev. 116, 3594–3657 (2016)

    Article  Google Scholar 

  15. H.A. Miller, M. Bellini, W. Oberhauser, X. Deng, H.Q. Chen, Q.G. He, M. Passaponti, M. Innocenti, R.O. Yang, F.F. Sun, Z. Jiang, F. Vizza, Phys. Chem. Chem. Phys. 18, 33142–33151 (2016)

    Article  Google Scholar 

  16. H.A. Miller, M. Bevilacqua, J. Filippi, A. Lavacchi, A. Marchionni, M. Marelli, S. Moneti, W. Oberhauser, E. Vesselli, M. Innocenti, F. Vizza, J. Mater. Chem. A. 1, 13337–13347 (2013)

    Article  Google Scholar 

  17. Q.G. He, X.F. Yang, R.H. He, A. Bueno-Lopez, H. Miller, X.M. Ren, W.L. Yang, B.E. Koel, J. Power Sources 213, 169–179 (2012)

    Article  Google Scholar 

  18. V. Bambagioni, C. Bianchini, J. Filippi, A. Lavacchi, W. Oberhauser, A. Marchionni, S. Moneti, F. Vizza, R. Psaro, V. Dal Santo, A. Gallo, S. Recchia, L. Sordelli, J. Power Sources 196, 2519–2529 (2011)

    Article  Google Scholar 

  19. N.I. Andersen, A. Serov, P. Atanassov, Appl. Catal. B-Environ. 163, 623–627 (2015)

    Article  Google Scholar 

  20. J. Li, S. Ghoshal, W. Liang, M.-T. Sougrati, F. Jaouen, B. Halevi, S. McKinney, G. McCool, C. Ma, X. Yuan, Z.-F. Ma, S. Mukerjee, Q. Jia, Energy Environ. Sci. 9, 2418–2432 (2016)

    Article  Google Scholar 

  21. W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z.D. Wei, L.J. Wan, J. Am. Chem. Soc. 138, 3570–3578 (2016)

    Article  Google Scholar 

  22. K. Strickland, M.W. Elise, Q.Y. Jia, U. Tylus, N. Ramaswamy, W.T. Liang, M. T. Sougrati, F. Jaouen and S. Mukerjee, Nat. Commun. 6, (2015)

    Google Scholar 

  23. T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Sci. Rep-Uk 5, 13801 (2015)

    Article  Google Scholar 

  24. A. Serov, K. Artyushkova, E. Niangar, C.M. Wang, N. Dale, F. Jaouen, M.T. Sougrati, Q.Y. Jia, S. Mukerjee, P. Atanassov, Nano. Energy 16, 293–300 (2015)

    Article  Google Scholar 

  25. Z.C. Wang, L. Xin, X.S. Zhao, Y. Qiu, Z.Y. Zhang, O.A. Baturina, W.Z. Li, Renew. Energy 62, 556–562 (2014)

    Article  Google Scholar 

  26. S. Maheswari, P. Sridhar, S. Pitchumani, Electrocatalysis 3, 13–21 (2012)

    Article  Google Scholar 

  27. Q.Y. Wang, X.Q. Cui, W.M. Guan, L. Zhang, X.F. Fan, Z. Shi, W.T. Zheng, J. Power Sources 269, 152–157 (2014)

    Article  Google Scholar 

  28. A. Treshchalov, H. Erikson, L. Puust, S. Tsarenko, R. Saar, A. Vanetsev, K. Tammeveski, I. Sildos, J. Colloid Interf. Sci. 491, 358–366 (2017)

    Article  Google Scholar 

  29. J. Durst, A. Siebel, C. Simon, F. Hasche, J. Herranz, H.A. Gasteiger, Energy Environ. Sci. 7, 2255–2260 (2014)

    Article  Google Scholar 

  30. S.Q. Lu, Z.B. Zhuang, Sci. China Mater. 59, 217–238 (2016)

    Article  Google Scholar 

  31. L. Angely, G. Bronoel, Electrochim. Acta. 25, 1541–1545 (1980)

    Article  Google Scholar 

  32. F. Alcaide, E. Brillas, P.L. Cabot, J. Electrochem. Soc. 152, E319–E327 (2005)

    Article  Google Scholar 

  33. N.M. Markovica, S.T. Sarraf, H.A. Gasteiger, P.N. Ross, J. Chemical Soc. Faraday Trans. 92, 3719–3725 (1996)

    Article  Google Scholar 

  34. T.J. Schmidt, P.N. Ross Jr., N.M. Markovic, J. Electroanal. Chem. 524–525, 252–260 (2002)

    Article  Google Scholar 

  35. D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic, D. van der Vliet, A.P. Paulikas, V.R. Stamenkovic, N.M. Markovic, Nat. Chem. 5, 300–306 (2013)

    Article  Google Scholar 

  36. S.M. Alia, Y.S. Yan, J. Electrochem. Soc. 162, F849–F853 (2015)

    Article  Google Scholar 

  37. W.C. Sheng, M. Myint, J.G.G. Chen, Y.S. Yan, Energy Environ. Sci. 6, 1509–1512 (2013)

    Article  Google Scholar 

  38. S. Henning, J. Herranz, H.A. Gasteiger, J. Electrochem. Soc. 162, F178–F189 (2015)

    Article  Google Scholar 

  39. Y. Wang, G.W. Wang, G.W. Li, B. Huang, J. Pan, Q. Liu, J.J. Han, L. Xiao, J.T. Lu, L. Zhuang, Energy Environ. Sci. 8, 177–181 (2015)

    Article  Google Scholar 

  40. S.Q. Lu, Z.B. Zhuang, J. Am. Chem. Soc. 139, 5156–5163 (2017)

    Article  Google Scholar 

  41. J. Mazher, F.A. Al-Odail, Comput. Theor. Chem. 2015, 63–69 (1063)

    Google Scholar 

  42. J. Zheng, S.Y. Zhou, S. Gu, B.J. Xu, Y.S. Yan, J. Electrochem. Soc. 163, F499–F506 (2016)

    Article  Google Scholar 

  43. J. Ohyama, T. Sato, Y. Yamamoto, S. Arai, A. Satsuma, J. Am. Chem. Soc. 135, 8016–8021 (2013)

    Article  Google Scholar 

  44. J. Ponce-Gonzalez, D.K. Whelligan, L. Wang, R. Bance-Soualhi, Y. Wang, Y. Peng, H. Peng, D.C. Apperley, H.N. Sarode, T.P. Pandey, A.G. Divekar, S. Seifert, A.M. Herring, L. Zhuang, J.R. Varcoe, Energy Environ. Sci. 9, 3724–3735 (2016)

    Article  Google Scholar 

  45. L. Wang, E. Magliocca, E.L. Cunningham, W.E. Mustain, S.D. Poynton, R. Escudero-Cid, M.M. Nasef, J. Ponce-Gonzalez, R. Bance-Souahli, R.C.T. Slade, D.K. Whelligan, J.R. Varcoe, Green Chem. (2017). https://doi.org/10.1039/c6gc02526a

    Google Scholar 

  46. M. Alesker, M. Page, M. Shviro, Y. Paska, G. Gershinsky, D.R. Dekel, D. Zitoun, J. Power Sources 304, 332–339 (2016)

    Article  Google Scholar 

  47. H.A. Miller, A. Lavacchi, F. Vizza, M. Marelli, F. Di Benedetto, F.D.I. Acapito, Y. Paska, M. Page, D.R. Dekel, Angew. Chem. Int. Edit. 55, 6004–6007 (2016)

    Article  Google Scholar 

  48. S.F. Lu, J. Pan, A.B. Huang, L. Zhuang, J.T. Lu, P. Natl. Acad. Sci. USA 105, 20611–20614 (2008)

    Article  Google Scholar 

  49. Q.P. Hu, G.W. Li, J. Pan, L.S. Tan, J.T. Lu, L. Zhuang, Int. J. Hydrogen Energy 38, 16264–16268 (2013)

    Article  Google Scholar 

  50. S. Gu, W.C. Sheng, R. Cai, S.M. Alia, S.Q. Song, K.O. Jensen, Y.S. Yan, Chem. Commun. 49, 131–133 (2013)

    Article  Google Scholar 

  51. J.N. Schwämmlein, H.A. El-Sayed, B.M. Stühmeier, K.F. Wagenbauer, H. Dietz, H.A. Gasteiger, Ecs Transactions. 75, 971–982 (2016)

    Google Scholar 

  52. K. Elbert, J. Hu, Z. Ma, Y. Zhang, G.Y. Chen, W. An, P. Liu, H.S. Isaacs, R.R. Adzic, J.X. Wang, Acs Catal. 5, 6764–6772 (2015)

    Article  Google Scholar 

  53. M. Shao, J. Power Sources 196, 2433–2444 (2011)

    Article  Google Scholar 

  54. K. Kwon, S.A. Jin, K.H. Lee, D.J. You, C. Pak, Catal. Today 232, 175–178 (2014)

    Article  Google Scholar 

  55. B. Istvan, P. Andras, D. Zitoun, Electrochim. Acta. 176, 1074–1082 (2015)

    Article  Google Scholar 

  56. X.L. Gao, Y.F. Wang, H.P. Xie, T. Liu, W. Chu, Chinese. J. Catal. 38, 396–403 (2017)

    Article  Google Scholar 

  57. J.H. Liao, W. Ding, S.C. Tao, Y. Nie, W. Li, G.P. Wu, S.G. Chen, L. Li, Z.D. Wei, Chinese. J. Catal. 37, 1142–1148 (2016)

    Article  Google Scholar 

  58. M.E. Scofield, Y.C. Zhou, S.Y. Yue, L. Wang, D. Su, X. Tong, M.B. Vukmirovic, R.R. Adzic, S.S. Wong, Acs. Catal. 6, 3895–3908 (2016)

    Article  Google Scholar 

  59. S. St John, R.W. Atkinson, R.R. Unocic, T.A. Zawodzinski, A.B. Papandrew, J. Phys. Chem. C. 119, 13481–13487 (2015)

    Article  Google Scholar 

  60. S.S. John, R.W. Atkinson, K.A. Unocic, R.R. Unocic, T.A. Zawodzinski, A.B. Papandrew, Acs. Catal. 5, 7015–7023 (2015)

    Article  Google Scholar 

  61. H.A. Miller, F. Vizza, M. Marelli, A. Zadick, L. Dubau, M. Chatenet, S. Geiger, S. Cherevko, H. Doan, R.K. Pavlicek, S. Mukerjee, D.R. Dekel, Nano. Energy 33, 293–305 (2017)

    Article  Google Scholar 

  62. A. Zadick, L. Dubau, U.B. Demirci, M. Chatenet, J. Electrochem. Soc. 163, F781–F787 (2016)

    Article  Google Scholar 

  63. A. Zadick, L. Dubau, N. Sergent, G. Berthome, M. Chatenet, Acs. Catal. 5, 4819–4824 (2015)

    Article  Google Scholar 

  64. S. Kabir, A. Zadick, P. Atanassov, L. Dubau, M. Chatenet, Electrochem. Commun. 78, 33–37 (2017)

    Article  Google Scholar 

  65. H.T. Chung, U. Martinez, I. Matanovic, Y.S. Kim, J. Phys. Chem. Lett. 7, 4464–4469 (2016)

    Article  Google Scholar 

  66. W.C. Sheng, A.P. Bivens, M. Myint, Z.B. Zhuang, R.V. Forest, Q.R. Fang, J.G. Chen, Y.S. Yan, Energ. Environ. Sci. 7, 1719–1724 (2014)

    Article  Google Scholar 

  67. O.V. Cherstiouk, P.A. Simonov, A.G. Oshchepkov, V.I. Zaikovskii, T.Y. Kardash, A. Bonnefont, V.N. Parmon, E.R. Savinova, J. Electroanal. Chem. 783, 146–151 (2016)

    Article  Google Scholar 

  68. Z.B. Zhuang, S.A. Giles, J. Zheng, G.R. Jenness, S. Caratzoulas, D.G. Vlachos, Y.S. Yan, Nat Commun. 7 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamish Andrew Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miller, H.A., Vizza, F. (2018). Electrocatalysts and Mechanisms of Hydrogen Oxidation in Alkaline Media for Anion Exchange Membrane Fuel Cells. In: An, L., Zhao, T. (eds) Anion Exchange Membrane Fuel Cells. Lecture Notes in Energy, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-71371-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71371-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71370-0

  • Online ISBN: 978-3-319-71371-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics