Electrocatalysts and Mechanisms of Hydrogen Oxidation in Alkaline Media for Anion Exchange Membrane Fuel Cells

Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 63)

Abstract

The anion exchange membrane fuel cell (AEM-FC) can potentially be much cheaper than the state of the art proton exchange membrane fuel cells (PEM-FC) for two main reasons. Firstly, the alkaline electrolyte enables the use of non-platinum electrocatalysts and secondly ultra-acid resistant fuel cell components (e.g. current collectors and bipolar plates) are not required. Some scientific and technological challenges must be overcome before AEM-FCs can compete with PEM-FCs. One of the most difficult is the poor kinetics of the hydrogen oxidation reaction (HOR) at high pHs. Consequently, developing non Pt HOR catalysts with high activity is key for improving the power densities of Pt-free fuel cells. In this chapter, we start by considering the mechanisms of the HOR in alkaline media and then review performance data recently reported for both PGM and non PGM HOR electrocatalysts. Emphasis is given to materials that have been used in complete AEM-FC tests.

Keywords

Fuel cells Alkaline electrocatalysis Hydrogen oxidation reaction Renewable energy Fuel efficiency Non-platinum catalysts Anode catalyst Anion exchange polymer electrolyte membrane 

References

  1. 1.
    M.K. Debe, Nat. 486, 43–51 (2012)CrossRefGoogle Scholar
  2. 2.
    O. Groger, H.A. Gasteiger, J.P. Suchsland, J. Electrochem. Soc. 162, A2605–A2622 (2015)CrossRefGoogle Scholar
  3. 3.
    A. Burke, L. Zhu, Res. Transp. Econ. 52, 65–71 (2015)CrossRefGoogle Scholar
  4. 4.
    Fuel Cell Technologies Office Multi-year Research, Development and Demonstration Plan Section 3.4 (U.S. DOE, 2017), https://energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf
  5. 5.
    B.D. James, J.M. Moton, W.G. Colella, Office of energy efficiency and renewable energy US DOE, Mass Production Cost Estimation of Direct H 2 PEM Fuel Cell Systems for Transportation Applications 2014 Update, (U.S. DOE, 2014), https://energy.gov/sites/prod/files/2014/11/f19/fcto_sa_2013_pemfc_transportation_cost_analysis.pdf
  6. 6.
    M. Piana, M. Boccia, A. Filpi, E. Flammia, H.A. Miller, M. Orsini, F. Salusti, S. Santiccioli, F. Ciardelli, A. Pucci, J. Power Sources 195, 5875–5881 (2010)CrossRefGoogle Scholar
  7. 7.
    J.R. Varcoe, R.C.T. Slade, Fuel Cells 5, 187–200 (2005)CrossRefGoogle Scholar
  8. 8.
    Y.J. Sa, C. Park, H.Y. Jeong, S.H. Park, Z. Lee, K.T. Kim, G.G. Park, S.H. Joo, Angew. Chem. Int. Edit. 53, 4102–4106 (2014)CrossRefGoogle Scholar
  9. 9.
    D. Dekel, in Encyclopedia of Applied Electrochemistry, eds. by G. Kreysa, K.-I. Ota, R. Savinell (Springer, New York, 2014), pp. 26–33.  https://doi.org/10.1007/978-1-4419-6996-5_181
  10. 10.
    D. Dekel, in Encyclopedia of Applied Electrochemistry, eds. by G. Kreysa, K.-i. Ota, R. Savinell (Springer New York, 2014), pp. 33–45.  https://doi.org/10.1007/978-1-4419-6996-5_524
  11. 11.
    J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M.A. Hickner, P.A. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, T.W. Xu, L. Zhuang, Energy Environ. Sci. 7, 3135–3191 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Nie, L. Li, Z.D. Wei, Chem. Soc. Rev. 44, 2168–2201 (2015)CrossRefGoogle Scholar
  13. 13.
    G. Wu, P. Zelenay, Accounts Chem. Res. 46, 1878–1889 (2013)CrossRefGoogle Scholar
  14. 14.
    M.H. Shao, Q.W. Chang, J.P. Dodelet, R. Chenitz, Chem. Rev. 116, 3594–3657 (2016)CrossRefGoogle Scholar
  15. 15.
    H.A. Miller, M. Bellini, W. Oberhauser, X. Deng, H.Q. Chen, Q.G. He, M. Passaponti, M. Innocenti, R.O. Yang, F.F. Sun, Z. Jiang, F. Vizza, Phys. Chem. Chem. Phys. 18, 33142–33151 (2016)CrossRefGoogle Scholar
  16. 16.
    H.A. Miller, M. Bevilacqua, J. Filippi, A. Lavacchi, A. Marchionni, M. Marelli, S. Moneti, W. Oberhauser, E. Vesselli, M. Innocenti, F. Vizza, J. Mater. Chem. A. 1, 13337–13347 (2013)CrossRefGoogle Scholar
  17. 17.
    Q.G. He, X.F. Yang, R.H. He, A. Bueno-Lopez, H. Miller, X.M. Ren, W.L. Yang, B.E. Koel, J. Power Sources 213, 169–179 (2012)CrossRefGoogle Scholar
  18. 18.
    V. Bambagioni, C. Bianchini, J. Filippi, A. Lavacchi, W. Oberhauser, A. Marchionni, S. Moneti, F. Vizza, R. Psaro, V. Dal Santo, A. Gallo, S. Recchia, L. Sordelli, J. Power Sources 196, 2519–2529 (2011)CrossRefGoogle Scholar
  19. 19.
    N.I. Andersen, A. Serov, P. Atanassov, Appl. Catal. B-Environ. 163, 623–627 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Li, S. Ghoshal, W. Liang, M.-T. Sougrati, F. Jaouen, B. Halevi, S. McKinney, G. McCool, C. Ma, X. Yuan, Z.-F. Ma, S. Mukerjee, Q. Jia, Energy Environ. Sci. 9, 2418–2432 (2016)CrossRefGoogle Scholar
  21. 21.
    W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z.D. Wei, L.J. Wan, J. Am. Chem. Soc. 138, 3570–3578 (2016)CrossRefGoogle Scholar
  22. 22.
    K. Strickland, M.W. Elise, Q.Y. Jia, U. Tylus, N. Ramaswamy, W.T. Liang, M. T. Sougrati, F. Jaouen and S. Mukerjee, Nat. Commun. 6, (2015)Google Scholar
  23. 23.
    T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Sci. Rep-Uk 5, 13801 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Serov, K. Artyushkova, E. Niangar, C.M. Wang, N. Dale, F. Jaouen, M.T. Sougrati, Q.Y. Jia, S. Mukerjee, P. Atanassov, Nano. Energy 16, 293–300 (2015)CrossRefGoogle Scholar
  25. 25.
    Z.C. Wang, L. Xin, X.S. Zhao, Y. Qiu, Z.Y. Zhang, O.A. Baturina, W.Z. Li, Renew. Energy 62, 556–562 (2014)CrossRefGoogle Scholar
  26. 26.
    S. Maheswari, P. Sridhar, S. Pitchumani, Electrocatalysis 3, 13–21 (2012)CrossRefGoogle Scholar
  27. 27.
    Q.Y. Wang, X.Q. Cui, W.M. Guan, L. Zhang, X.F. Fan, Z. Shi, W.T. Zheng, J. Power Sources 269, 152–157 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Treshchalov, H. Erikson, L. Puust, S. Tsarenko, R. Saar, A. Vanetsev, K. Tammeveski, I. Sildos, J. Colloid Interf. Sci. 491, 358–366 (2017)CrossRefGoogle Scholar
  29. 29.
    J. Durst, A. Siebel, C. Simon, F. Hasche, J. Herranz, H.A. Gasteiger, Energy Environ. Sci. 7, 2255–2260 (2014)CrossRefGoogle Scholar
  30. 30.
    S.Q. Lu, Z.B. Zhuang, Sci. China Mater. 59, 217–238 (2016)CrossRefGoogle Scholar
  31. 31.
    L. Angely, G. Bronoel, Electrochim. Acta. 25, 1541–1545 (1980)CrossRefGoogle Scholar
  32. 32.
    F. Alcaide, E. Brillas, P.L. Cabot, J. Electrochem. Soc. 152, E319–E327 (2005)CrossRefGoogle Scholar
  33. 33.
    N.M. Markovica, S.T. Sarraf, H.A. Gasteiger, P.N. Ross, J. Chemical Soc. Faraday Trans. 92, 3719–3725 (1996)CrossRefGoogle Scholar
  34. 34.
    T.J. Schmidt, P.N. Ross Jr., N.M. Markovic, J. Electroanal. Chem. 524–525, 252–260 (2002)CrossRefGoogle Scholar
  35. 35.
    D. Strmcnik, M. Uchimura, C. Wang, R. Subbaraman, N. Danilovic, D. van der Vliet, A.P. Paulikas, V.R. Stamenkovic, N.M. Markovic, Nat. Chem. 5, 300–306 (2013)CrossRefGoogle Scholar
  36. 36.
    S.M. Alia, Y.S. Yan, J. Electrochem. Soc. 162, F849–F853 (2015)CrossRefGoogle Scholar
  37. 37.
    W.C. Sheng, M. Myint, J.G.G. Chen, Y.S. Yan, Energy Environ. Sci. 6, 1509–1512 (2013)CrossRefGoogle Scholar
  38. 38.
    S. Henning, J. Herranz, H.A. Gasteiger, J. Electrochem. Soc. 162, F178–F189 (2015)CrossRefGoogle Scholar
  39. 39.
    Y. Wang, G.W. Wang, G.W. Li, B. Huang, J. Pan, Q. Liu, J.J. Han, L. Xiao, J.T. Lu, L. Zhuang, Energy Environ. Sci. 8, 177–181 (2015)CrossRefGoogle Scholar
  40. 40.
    S.Q. Lu, Z.B. Zhuang, J. Am. Chem. Soc. 139, 5156–5163 (2017)CrossRefGoogle Scholar
  41. 41.
    J. Mazher, F.A. Al-Odail, Comput. Theor. Chem. 2015, 63–69 (1063)Google Scholar
  42. 42.
    J. Zheng, S.Y. Zhou, S. Gu, B.J. Xu, Y.S. Yan, J. Electrochem. Soc. 163, F499–F506 (2016)CrossRefGoogle Scholar
  43. 43.
    J. Ohyama, T. Sato, Y. Yamamoto, S. Arai, A. Satsuma, J. Am. Chem. Soc. 135, 8016–8021 (2013)CrossRefGoogle Scholar
  44. 44.
    J. Ponce-Gonzalez, D.K. Whelligan, L. Wang, R. Bance-Soualhi, Y. Wang, Y. Peng, H. Peng, D.C. Apperley, H.N. Sarode, T.P. Pandey, A.G. Divekar, S. Seifert, A.M. Herring, L. Zhuang, J.R. Varcoe, Energy Environ. Sci. 9, 3724–3735 (2016)CrossRefGoogle Scholar
  45. 45.
    L. Wang, E. Magliocca, E.L. Cunningham, W.E. Mustain, S.D. Poynton, R. Escudero-Cid, M.M. Nasef, J. Ponce-Gonzalez, R. Bance-Souahli, R.C.T. Slade, D.K. Whelligan, J.R. Varcoe, Green Chem. (2017).  https://doi.org/10.1039/c6gc02526a Google Scholar
  46. 46.
    M. Alesker, M. Page, M. Shviro, Y. Paska, G. Gershinsky, D.R. Dekel, D. Zitoun, J. Power Sources 304, 332–339 (2016)CrossRefGoogle Scholar
  47. 47.
    H.A. Miller, A. Lavacchi, F. Vizza, M. Marelli, F. Di Benedetto, F.D.I. Acapito, Y. Paska, M. Page, D.R. Dekel, Angew. Chem. Int. Edit. 55, 6004–6007 (2016)CrossRefGoogle Scholar
  48. 48.
    S.F. Lu, J. Pan, A.B. Huang, L. Zhuang, J.T. Lu, P. Natl. Acad. Sci. USA 105, 20611–20614 (2008)CrossRefGoogle Scholar
  49. 49.
    Q.P. Hu, G.W. Li, J. Pan, L.S. Tan, J.T. Lu, L. Zhuang, Int. J. Hydrogen Energy 38, 16264–16268 (2013)CrossRefGoogle Scholar
  50. 50.
    S. Gu, W.C. Sheng, R. Cai, S.M. Alia, S.Q. Song, K.O. Jensen, Y.S. Yan, Chem. Commun. 49, 131–133 (2013)CrossRefGoogle Scholar
  51. 51.
    J.N. Schwämmlein, H.A. El-Sayed, B.M. Stühmeier, K.F. Wagenbauer, H. Dietz, H.A. Gasteiger, Ecs Transactions. 75, 971–982 (2016)Google Scholar
  52. 52.
    K. Elbert, J. Hu, Z. Ma, Y. Zhang, G.Y. Chen, W. An, P. Liu, H.S. Isaacs, R.R. Adzic, J.X. Wang, Acs Catal. 5, 6764–6772 (2015)CrossRefGoogle Scholar
  53. 53.
    M. Shao, J. Power Sources 196, 2433–2444 (2011)CrossRefGoogle Scholar
  54. 54.
    K. Kwon, S.A. Jin, K.H. Lee, D.J. You, C. Pak, Catal. Today 232, 175–178 (2014)CrossRefGoogle Scholar
  55. 55.
    B. Istvan, P. Andras, D. Zitoun, Electrochim. Acta. 176, 1074–1082 (2015)CrossRefGoogle Scholar
  56. 56.
    X.L. Gao, Y.F. Wang, H.P. Xie, T. Liu, W. Chu, Chinese. J. Catal. 38, 396–403 (2017)CrossRefGoogle Scholar
  57. 57.
    J.H. Liao, W. Ding, S.C. Tao, Y. Nie, W. Li, G.P. Wu, S.G. Chen, L. Li, Z.D. Wei, Chinese. J. Catal. 37, 1142–1148 (2016)CrossRefGoogle Scholar
  58. 58.
    M.E. Scofield, Y.C. Zhou, S.Y. Yue, L. Wang, D. Su, X. Tong, M.B. Vukmirovic, R.R. Adzic, S.S. Wong, Acs. Catal. 6, 3895–3908 (2016)CrossRefGoogle Scholar
  59. 59.
    S. St John, R.W. Atkinson, R.R. Unocic, T.A. Zawodzinski, A.B. Papandrew, J. Phys. Chem. C. 119, 13481–13487 (2015)CrossRefGoogle Scholar
  60. 60.
    S.S. John, R.W. Atkinson, K.A. Unocic, R.R. Unocic, T.A. Zawodzinski, A.B. Papandrew, Acs. Catal. 5, 7015–7023 (2015)CrossRefGoogle Scholar
  61. 61.
    H.A. Miller, F. Vizza, M. Marelli, A. Zadick, L. Dubau, M. Chatenet, S. Geiger, S. Cherevko, H. Doan, R.K. Pavlicek, S. Mukerjee, D.R. Dekel, Nano. Energy 33, 293–305 (2017)CrossRefGoogle Scholar
  62. 62.
    A. Zadick, L. Dubau, U.B. Demirci, M. Chatenet, J. Electrochem. Soc. 163, F781–F787 (2016)CrossRefGoogle Scholar
  63. 63.
    A. Zadick, L. Dubau, N. Sergent, G. Berthome, M. Chatenet, Acs. Catal. 5, 4819–4824 (2015)CrossRefGoogle Scholar
  64. 64.
    S. Kabir, A. Zadick, P. Atanassov, L. Dubau, M. Chatenet, Electrochem. Commun. 78, 33–37 (2017)CrossRefGoogle Scholar
  65. 65.
    H.T. Chung, U. Martinez, I. Matanovic, Y.S. Kim, J. Phys. Chem. Lett. 7, 4464–4469 (2016)CrossRefGoogle Scholar
  66. 66.
    W.C. Sheng, A.P. Bivens, M. Myint, Z.B. Zhuang, R.V. Forest, Q.R. Fang, J.G. Chen, Y.S. Yan, Energ. Environ. Sci. 7, 1719–1724 (2014)CrossRefGoogle Scholar
  67. 67.
    O.V. Cherstiouk, P.A. Simonov, A.G. Oshchepkov, V.I. Zaikovskii, T.Y. Kardash, A. Bonnefont, V.N. Parmon, E.R. Savinova, J. Electroanal. Chem. 783, 146–151 (2016)CrossRefGoogle Scholar
  68. 68.
    Z.B. Zhuang, S.A. Giles, J. Zheng, G.R. Jenness, S. Caratzoulas, D.G. Vlachos, Y.S. Yan, Nat Commun. 7 (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ICCOM-CNRSesto Fiorentino (Firenze)Italy

Personalised recommendations