Water and Ion Transport in Anion Exchange Membrane Fuel Cells

Chapter
Part of the Lecture Notes in Energy book series (LNEN, volume 63)

Abstract

Much of the work on Anion Exchange Membrane Fuel Cells (AEMFCs) in recent years has focused on the development of new catalysts and membranes. Though this work is important, it has overlooked mass transport in these systems, which is equally critical to achieving high performance. This chapter provides an overview of aspects related to AEMFC water management and carbonation upon exposure to carbon dioxide. managing both of these are needed in order to achieve high performing fuel cells.

Notes

Acknowledgements

The authors would like to thank Professor John Varcoe from the University of Surrey, Professor Mike Hickner at Penn State University, Dr. Bryan Pivovar from the National Renewable Energy Laboratory, Professor Dario Dekel from Technion and Dr. Kathy Ayers from Proton OnSite for the many enlightening discussions regarding the current state-of-the-art and needs of AEMs and AEMFCs that have formed the basis for this work. We would also like to thank Leonard Bonville at the University of Connecticut for helping us with the story and most relevant references for AFCs.

References

  1. 1.
    Thompson Reuters, Web of science, citation report for “Anion Exchange Membrane Fuel Cell” search. Available at: www.webofknowledge.com. Accessed 15 May 2017
  2. 2.
    J.R. Varcoe, P. Atanassov, D.R. Dekel, A.M. Herring, M.A. Hickner, P.A. Kohl, A.R. Kucernak, W.E. Mustain, K. Nijmeijer, K. Scott, T. Xu, L. Zhuang, Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7, 3135–3191 (2014)CrossRefGoogle Scholar
  3. 3.
    P. Zelenay, in Non-precious metal fuel cell cathodes: catalyst development and electrode structure design. DOE Hydrogen and Fuel Cells Program 2016 AMR. https://www.hydrogen.energy.gov/pdfs/review16/fc107_zelenay_2016_o.pdf
  4. 4.
    L.Q. Wang, E. Magliocca, E.L. Cunningham, W.E. Mustain, S.D. Poynton, R. Escudero-Cid, M.M. Nasef, J. Ponce-González, R. Bance-Souahli, R.C.T. Slade, D.K. Whelligan, J.R. Varcoe, An optimised synthesis of high performance radiation-grafted anion-exchange membranes. Green Chem. 19, 831–843 (2017)CrossRefGoogle Scholar
  5. 5.
    I. EG&G Technical Services, Fuel Cell Handbook (7th ed., DOE: Office of Fossil Energy—National Technical Laboratiory, Morgantown, WV, 2004). https://www.netl.doe.gov/File%20Library/research/coal/energy%20systems/fuel%20cells/FCHandbook7.pdf
  6. 6.
    Thompson Reuters, Web of science, citation report for “Proton Exchange Membrane Fuel Cell” search. Available at: www.webofknowledge.com. Accessed 15 May 2017
  7. 7.
    T.J. Omasta, L. Wang, X. Peng, C.A. Lewis, J.R. Varcoe, W.E. Mustain, Importance of balancing membrane and electrode water in anion exchange membrane fuel cells. J. Power Sources. SI: Current status of AEMFCs (2017).  375, 205-213 (2018)
  8. 8.
    Y. Wang, G. Wang, G. Li, B. Huang, J. Pan, Q. Liu, J. Han, L. Xiao, J. Lu, L. Zhuang, Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ. Sci. 8, 177–181 (2015)CrossRefGoogle Scholar
  9. 9.
    T.J. Omasta, A. Park, J.M. LaManna, Y. Zhang, X. Peng, L. Wang, D.L. Jacobson, J.R. Varcoe, D.S. Hussey, B. Pivovar, W.E. Mustain, Beyond catalysis and membranes: visualizing and solving the challenge of electrode water accumulation and flooding in AEMFCs, Energy Environ. Sci. (2018). Accepted, https://doi.org/10.1039/C8EE00122G
  10. 10.
    W.R. Grove, On the gas voltaic battery. experiments made with a view of ascertaining the rationale of its action and its application to eudiometry. Phil. Trans. R. Soc. Lond. A. 133, 91–112 (1843)CrossRefGoogle Scholar
  11. 11.
    V.S. Bagotsky, A.M. Skundin, Y.M. Volfkovich (eds.), Alkaline fuel cells (AFC), in Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors (Wiley, New Jersey, 2014), pp. 229–237Google Scholar
  12. 12.
    N.H. Behling (ed.), Chapter 3: History of alkaline fuel cells, in Fuel Cells: Current Technology Challenges and Future Research Needs (1st ed., Newnes, Oxford, England, 2013), p. 704Google Scholar
  13. 13.
    E. Gülzow, M. Schulze, Long-term operation of AFC electrodes with CO2 containing gases. J. Power Sources 127, 243–251 (2004)CrossRefGoogle Scholar
  14. 14.
    S. Gottesfeld, Systems and methods of securing immunity to air CO2 in alkalkine fuel cells, U.S. Patent, 20150155580 (2015)Google Scholar
  15. 15.
    H. Yanagi, K. Fukuta, Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs). ECS Trans. 16, 257–262 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Al-Saleh, S. Gültekin, A. Al-Zakri, H. Celiker, Effect of carbon dioxide on the performance of Ni/PTFE and Ag/PTFE electrodes in an alkaline fuel cell. J. Appl. Electrochem. 24, 575–580 (1994)CrossRefGoogle Scholar
  17. 17.
    E. Gülzow, Alkaline fuel cells: a critical view. J. Power Sources 61, 99–104 (1996)CrossRefGoogle Scholar
  18. 18.
    M. Al-Saleh, S. Gultekin, A. Al-Zakri, H. Celiker, Performance of porous nickel electrode for alkaline H2/O2 fuel cell. Int. J. Hydrogen Energy 19, 713–718 (1994)CrossRefGoogle Scholar
  19. 19.
    M. Schulze, E. Gülzow, Degradation of nickel anodes in alkaline fuel cells. J. Power Sources 127, 252–263 (2004)CrossRefGoogle Scholar
  20. 20.
    G. McLean, T. Niet, S. Prince-Richard, N. Djilali, An assessment of alkaline fuel cell technology. Int. J. Hydrogen Energy 27, 507–526 (2002)CrossRefGoogle Scholar
  21. 21.
    K.N. Grew, W.K. Chiu, A dusty fluid model for predicting hydroxyl anion conductivity in alkaline anion exchange membranes. J. Electrochem. Soc. 157, B327–B337 (2010)CrossRefGoogle Scholar
  22. 22.
    N. Ziv, W.E. Mustain, D.D. Dekel, Review of ambient CO2 effect on anion exchange membranes fuel cells, ChemSusChem. (2018). Accepted, https://doi.org/10.1002/cssc.201702330
  23. 23.
    J.A. Vega, C. Chartier, W.E. Mustain, Effect of hydroxide and carbonate alkaline media on anion exchange membranes. J. Power Sources 195, 7176–7180 (2010)CrossRefGoogle Scholar
  24. 24.
    J. Zhou, M. Unlu, J.A. Vega, P.A. Kohl, Anionic polysulfone ionomers and membranes containing fluorenyl groups for anionic fuel cells. J. Power Sources 190, 285–292 (2009)CrossRefGoogle Scholar
  25. 25.
    J.A. Vega, W.E. Mustain, Effect of CO2, HCO3 and CO3−2 on oxygen reduction in anion exchange membrane fuel cells. Electrochim. Acta 55, 1638–1644 (2010)CrossRefGoogle Scholar
  26. 26.
    J.A. Vega, S. Smith, W.E. Mustain, Hydrogen and methanol oxidation reaction in hydroxide and carbonate alkaline media. J. Electrochem. Soc. 158, B349–B354 (2011)CrossRefGoogle Scholar
  27. 27.
    I. Gunasekara, M. Lee, D. Abbott, S. Mukerjee, Mass transport and oxygen reduction kinetics at an anion exchange membrane interface: microelectrode studies on effect of carbonate exchange. ECS Electrochem. Lett. 1, F16–F19 (2012)CrossRefGoogle Scholar
  28. 28.
    T. Sata, Ion exchange membranes: preparation, characterization, modification and application, 1st edn. (Royal Society of Chemistry, Cambridge, 2004), p. 324Google Scholar
  29. 29.
    T. Xu, Ion exchange membranes: state of their development and perspective. J. Membr. Sci. 263, 1–29 (2005)CrossRefGoogle Scholar
  30. 30.
    T.P. Pandey, A.M. Maes, H.N. Sarode, B.D. Peters, S. Lavina, K. Vezzù, Y. Yang, S.D. Poynton, J.R. Varcoe, S. Seifert, M.W. Liberatore, V. Di Noto, A.M. Herring, Interplay between water uptake, ion interactions, and conductivity in e-beam grafted poly(ethylene-co-tetraflouroethylene) anion exchange membrane. Phys. Chem. Chem. Phys., 17, 4367-4378 (2015)Google Scholar
  31. 31.
    C. Chen, J. Pan, J. Han, Y. Wang, L. Zhu, M.A. Hickner, L. Zhuang, Varying the microphase separation patterns of alkaline polymer electrolytes. J. Mater. Chem. A. 4, 4071–4081 (2016)CrossRefGoogle Scholar
  32. 32.
    B.S. Pivovar, in Advanced Ionomers & MEAs for Alkaline Membrane Fuel Cells. DOE Hydrogen and Fuel Cells Program AMR (2016). https://www.hydrogen.energy.gov/pdfs/review16/fc147_pivovar_2016_o.pdf
  33. 33.
    B.S. Pivovar, in Advanced Ionomers & MEAs for Alkaline Membrane Fuel Cells. DOE Hydrogen and Fuel Cells Program AMR (2017). https://www.hydrogen.energy.gov/pdfs/review17/fc147_pivovar_2017_o.pdf
  34. 34.
    A.G. Wright, J. Fan, B. Britton, T. Weissbach, H. Lee, E.A. Kitching, T.J. Peckham, S. Holdcroft, Hexamethyl-p-terphenyl poly (benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices. Energy Environ. Sci. 9, 2130–2142 (2016)CrossRefGoogle Scholar
  35. 35.
    L. Zhu, J. Pan, Y. Wang, J. Han, L. Zhuang, M.A. Hickner, Multication side chain anion exchange membranes. Macromolecules 49, 815–824 (2016)CrossRefGoogle Scholar
  36. 36.
    J. Ponce-González, D.K. Whelligan, L. Wang, R. Bance-Soualhi, Y. Wang, Y. Peng, H. Peng, D.C. Apperley, H.N. Sarode, T.P. Pandey, A.G. Divekar, S. Seifert, A.M. Herring, L. Zhuang, J.R. Varcoe, High performance aliphatic-heterocyclic benzyl-quaternary ammonium radiation-grafted anion-exchange membranes. Energy Environ. Sci. 9, 3724–3735 (2016)CrossRefGoogle Scholar
  37. 37.
    A.D. Mohanty, C.Y. Ryu, Y.S. Kim, C. Bae, Stable elastomeric anion exchange membranes based on quaternary ammonium-tethered polystyrene-b-poly (ethylene-co-butylene)-b-polystyrene triblock copolymers. Macromolecules 48, 7085–7095 (2015)CrossRefGoogle Scholar
  38. 38.
    M.R. Sturgeon, H. Long, A.M. Park, B.S. Pivovar, Advancements in anion exchange membrane cations. ECS Trans. 69, 377–383 (2015)CrossRefGoogle Scholar
  39. 39.
    L.A. Adams, S.D. Poynton, C. Tamain, R.C.T. Slade, J.R. Varcoe, A carbon dioxide tolerant aqueous-electrolyte-free anion-exchange membrane alkaline fuel cell. ChemSusChem 1, 79–81 (2008)CrossRefGoogle Scholar
  40. 40.
    L. Wang, M.A. Hickner, Highly conductive side chain block copolymer anion exchange membranes. Soft Matter 12, 5359–5371 (2016)CrossRefGoogle Scholar
  41. 41.
    M. Mamlouk, J. Horsfall, C. Williams, K. Scott, Radiation grafted membranes for superior anion exchange polymer membrane fuel cells performance. Int. J. Hydrogen Energy 37, 11912–11920 (2012)CrossRefGoogle Scholar
  42. 42.
    Q. Zhang, Q. Zhang, J. Wang, S. Zhang, S. Li, Synthesis and alkaline stability of novel cardo poly (aryl ether sulfone) s with pendent quaternary ammonium aliphatic side chains for anion exchange membranes. Polymer 51, 5407–5416 (2010)CrossRefGoogle Scholar
  43. 43.
    X. Yan, S. Gu, G. He, X. Wu, J. Benziger, Imidazolium-functionalized poly (ether ether ketone) as membrane and electrode ionomer for low-temperature alkaline membrane direct methanol fuel cell. J. Power Sources 250, 90–97 (2014)CrossRefGoogle Scholar
  44. 44.
    K.J. Noonan, K.M. Hugar, H.A. Kostalik IV, E.B. Lobkovsky, H.D. Abruña, G.W. Coates, Phosphonium-functionalized polyethylene: a new class of base-stable alkaline anion exchange membranes. J. Am. Chem. Soc. 134, 18161–18164 (2012)CrossRefGoogle Scholar
  45. 45.
    B. Zhang, S. Gu, J. Wang, Y. Liu, A.M. Herring, Y. Yan, Tertiary sulfonium as a cationic functional group for hydroxide exchange membranes. Rsc Adv. 2, 12683–12685 (2012)CrossRefGoogle Scholar
  46. 46.
    A.N. Lai, D. Guo, C.X. Lin, Q.G. Zhang, A.M. Zhu, M.L. Ye, Q.L. Liu, Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells. J. Power Sources 327, 56–66 (2016)CrossRefGoogle Scholar
  47. 47.
    K.K. Stokes, J.A. Orlicki, F.L. Beyer, RAFT polymerization and thermal behavior of trimethylphosphonium polystyrenes for anion exchange membranes. Polym. Chem. 2, 80–82 (2011)CrossRefGoogle Scholar
  48. 48.
    S.D. Sajjad, Y. Hong, F. Liu, Synthesis of guanidinium-based anion exchange membranes and their stability assessment. Polym. Adv. Technol. 25, 108–116 (2014)CrossRefGoogle Scholar
  49. 49.
    A. Huang, C. Xia, C. Xiao, Composite anion exchange membrane for alkaline direct methanol fuel cell: structural and electrochemical characterization. J. Appl. Polym. Sci. 100, 2248–2251 (2006)CrossRefGoogle Scholar
  50. 50.
    Q. Zhao, P. Majsztrik, J. Benziger, Diffusion and interfacial transport of water in Nafion. J. Phys. Chem. B. 115, 2717–2727 (2011)CrossRefGoogle Scholar
  51. 51.
    A. Kusoglu, A.Z. Weber, Water transport and sorption in nafion membrane, polymers for energy storage and delivery: polyelectrolytes for batteries and fuel cells. Am. Chem. Soc. pp. 175–199 (2012)Google Scholar
  52. 52.
    D.R. Dekel, M. Amar, S. Willdorf, M. Kosa, S. Dhara and C.E. Diesendruck, Effect of Water on the Stability of Quaternary Ammonium Groups for Anion Exchange Membrane Fuel Cell Applications.  Chem. Mater. 29, 4425-4431 (2017)Google Scholar
  53. 53.
    T.D. Myles, A.M. Kiss, K.N. Grew, A.A. Peracchio, G.J. Nelson, W.K. Chiu, Calculation of water diffusion coefficients in an anion exchange membrane using a water permeation technique. J. Electrochem. Soc. 158, B790–B796 (2011)CrossRefGoogle Scholar
  54. 54.
    A.M. Kiss, T.D. Myles, K.N. Grew, A.A. Peracchio, G.J. Nelson, W.K. Chiu, Carbonate and bicarbonate ion transport in alkaline anion exchange membranes. J. Electrochem. Soc. 160, F994–F999 (2013)CrossRefGoogle Scholar
  55. 55.
    Y. Oshiba, J. Hiura, Y. Suzuki, T. Yamaguchi, Improvement in the solid-state alkaline fuel cell performance through efficient water management strategies. J. Power Sources 345, 221–226 (2017)CrossRefGoogle Scholar
  56. 56.
    R.B. Kaspar, M.P. Letterio, J.A. Wittkopf, K. Gong, S. Gu, Y. Yan, Manipulating water in high-performance hydroxide exchange membrane fuel cells through asymmetric humidification and wetproofing. J. Electrochem. Soc. 162, F483–F488 (2015)CrossRefGoogle Scholar
  57. 57.
    R. Espiritu, M. Mamlouk, K. Scott, Study on the effect of the degree of grafting on the performance of polyethylene-based anion exchange membrane for fuel cell application. Int. J. Hydrogen Energy 41, 1120–1133 (2016)CrossRefGoogle Scholar
  58. 58.
    G.S. Sailaja, S. Miyanishi, T. Yamaguchi, A durable anion conducting membrane with packed anion-exchange sites and an aromatic backbone for solid-state alkaline fuel cells. Polym. Chem. 6, 7964–7973 (2015)CrossRefGoogle Scholar
  59. 59.
    S.D. Poynton, R.C.T. Slade, T.J. Omasta, W.E. Mustain, R. Escudero-Cid, P. Ocón, J.R. Varcoe, Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells. J. Mater. Chem. A. 2, 5124–5130 (2014)CrossRefGoogle Scholar
  60. 60.
    R.S. Fu, U. Pasaogullari, T. Shiomi, Y. Tabuchi, D.S. Hussey, D.L. Jacobson, High-resolution neutron radiography of through-plane liquid water distribution in polymer electrolyte membrane and gas diffusion layer. J. Electrochem. Soc. 159, F545–F553 (2012)CrossRefGoogle Scholar
  61. 61.
    I.V. Zenyuk, A. Lamibrac, J. Eller, D.Y. Parkinson, F. Marone, F.N. Büchi, A.Z. Weber, Investigating evaporation in gas diffusion layers for fuel cells with X-ray computed tomography. J. Phys. Chem. C 120, 28701–28711 (2016)CrossRefGoogle Scholar
  62. 62.
    S.S. Alrwashdeh, I. Manke, H. Markötter, M. Klages, M. Göbel, J. Haußmann, J. Scholta, J. Banhart, In-operando quantification of three dimensional water distribution in nanoporous carbon based layers in polymer electrolyte membrane fuel cells. ACS Nano (2017).  https://doi.org/10.1021/acsnano.7b01720 Google Scholar
  63. 63.
    D.R. Dekel, Review of cell performance in anion exchange membrane fuel cells. J. Power Sources. 375, 158–169 (2018)Google Scholar
  64. 64.
    Office of Energy Efficiency & Renewable Energy, DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components. Available at: https://energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components. Accessed 31 June 2017
  65. 65.
    T.P. Pandey, A.M. Maes, H.N. Sarode, B.D. Peters, S. Lavina, K. Vezzu, Y. Yang, S.D. Poynton, J.R. Varcoe, S. Seifert, M.W. Liberatore, V. Di Noto, A.M. Herring, Interplay between water uptake, ion interactions, and conductivity in an e-beam grafted poly (ethylene-co-tetrafluoroethylene) anion exchange membrane. Phys. Chem. Chem. Phys. 17, 4367–4378 (2015)CrossRefGoogle Scholar
  66. 66.
    G.S. Prakash, F.C. Krause, F.A. Viva, S. Narayanan, G.A. Olah, Study of operating conditions and cell design on the performance of alkaline anion exchange membrane based direct methanol fuel cells. J. Power Sources 196, 7967–7972 (2011)CrossRefGoogle Scholar
  67. 67.
    Z. Siroma, S. Watanabe, K. Yasuda, K. Fukuta, H. Yanagi, Mathematical modeling of the concentration profile of carbonate ions in an anion exchange membrane fuel cell. J. Electrochem. Soc. 158, B682–B689 (2011)CrossRefGoogle Scholar
  68. 68.
    K. Fukuta, H. Inoue, Y. Chikashige, H. Yanagi, Improved maximum power density of alkaline membrane fuel cells (AMFCs) by the optimization of MEA construction. ECS Trans. 28, 221–225 (2010)CrossRefGoogle Scholar
  69. 69.
    A.M. Park, R.J. Wycisk, X. Ren, F.E. Turley, P.N. Pintauro, Crosslinked poly (phenylene oxide)-based nanofiber composite membranes for alkaline fuel cells. J. Mater. Chem. A. 4, 132–141 (2016)CrossRefGoogle Scholar
  70. 70.
    W.A. Rigdon, T.J. Omasta, C. Lewis, M.A. Hickner, J.R. Varcoe, J.N. Renner, K.E. Ayers, W.E. Mustain, Carbonate dynamics and opportunities with low temperature, AEM-based electrochemical CO2 separators. J. Electrochem. Energy Convers. Storage (2017)Google Scholar
  71. 71.
    G. Li, Y. Wang, J. Pan, J. Han, Q. Liu, X. Li, P. Li, C. Chen, L. Xiao, J. Lu, Carbonation effects on the performance of alkaline polymer electrolyte fuel cells. Int. J. Hydrogen Energy 40, 6655–6660 (2015)CrossRefGoogle Scholar
  72. 72.
    W.E. Mustain, Importance of Carbonates in the Low Temperature Electrochemical CO2 Cycle and New Opportunities. Beijing Forum on Electrochemical Frontier—Alkaline Membrane Fuel Cells: Catalysts and Materials (2016)Google Scholar
  73. 73.
    K. Li, N. Li, Removal of carbon dioxide from breathing gas mixtures using an electrochemical membrane cell. Sep. Sci. Technol. 28, 1085–1090 (1993)CrossRefGoogle Scholar
  74. 74.
    K. Li, W. Teo, R. Hughes, Use of membranes for carbon dioxide removal in underwater life support systems (1994)Google Scholar
  75. 75.
    J. Landon, J.R. Kitchin, Electrochemical concentration of carbon dioxide from an oxygen/carbon dioxide containing gas stream. J. Electrochem. Soc. 157, B1149–B1153 (2010)CrossRefGoogle Scholar
  76. 76.
    H.W. Pennline, E.J. Granite, D.R. Luebke, J.R. Kitchin, J. Landon, L.M. Weiland, Separation of CO2 from flue gas using electrochemical cells. Fuel 89, 1307–1314 (2010)CrossRefGoogle Scholar
  77. 77.
    G.T. Rochelle, Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009)CrossRefGoogle Scholar
  78. 78.
    A. Padurean, C. Cormos, P. Agachi, Pre-combustion carbon dioxide capture by gas–liquid absorption for integrated gasification combined cycle power plants. Int. J. Greenh. Gas Control. 7, 1–11 (2012)CrossRefGoogle Scholar
  79. 79.
    T.J. Omasta, W.A. Rigdon, C.A. Lewis, R.J. Stanis, R. Liu, C.Q. Fan, W.E. Mustain, Near Room Temperature Conversion of Methane to Methanol. in ECS Spring Meeting, Oral Presentation (2015)Google Scholar
  80. 80.
    N. Spinner, W.E. Mustain, Electrochemical methane activation and conversion to oxygenates at room temperature. J. Electrochem. Soc. 160, F1275–F1281 (2013)CrossRefGoogle Scholar
  81. 81.
    Proton Onsite, in Membrane-based electrolysis: overview. Available at: https://energy.gov/sites/prod/files/2014/08/f18/fcto_2014_electrolytic_h2_wkshp_ayers1.pdf. Accessed 31 June 2017

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering, College of Engineering and ComputingUniversity of South CarolinaColumbiaUSA

Personalised recommendations