Taxonomy of Australian Seagrasses



This chapter lists all Australian seagrass species with their synonyms, which are currently accepted by the IPNI (International Plant Name Index) and the Plant List; the world authority of plant taxonomy. It also briefly reviews taxonomic studies on the Australian seagrasses and includes keys to all Australian seagrass species, with the practical goal of providing botanists with a name for seagrass species based on morphological characteristics. With their limited range of morphological characters, even constructing a morphological key presents some difficulties. The Australian waters are rich in seagrass species (33), with more than one third of the described seagrass species in the world. The majority of Australian temperate species are endemic, while those occurring in Australian tropics are also distributed in the Indo-Pacific region. Where possible we consider the results of molecular phylogenies but at present these are incomplete, and have only focused on a limited range of species.


  1. Aires T, Marba N, Cunba RL, Kendrick GA, Walker DI, Serrao EA, Duarte CM, Arnaud-Haond (2011) Evolutionary history of the seagrass genus Posidonia. Mar Ecol Prog Ser 421:117–130Google Scholar
  2. Alves RJV, Filho MDMV (2007) Is classical taxonomy obsolete? Taxon 56:287–288Google Scholar
  3. APG (1998) Angiosperm Phylogeny Group. Ann. Missouri Bot. Gard. 55: 531–553.Google Scholar
  4. APG II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants. Linn Soc Bot J 141: 399–436.Google Scholar
  5. Ascherson P (1868) Vorabeiten zu einer Ubersicht der phanerogamen Meergewächse. Linnaea 35:152–208Google Scholar
  6. Ascherson P (1871) Die geographische Verbreitung der Seegräser. In: Petermann’s Geographische Mitteilungen 17:241–248Google Scholar
  7. Ascherson P (1875) Die geographische Verbreitung der Seegräser. In: Neumayer G (ed), Anleitung zu wissenschaftlichen Beobachtungen auf Reisen, mit besondere Rücksicht auf die Bedürfnisse der kaiserlichen Marine. pp 359–373. Robert Oppenheim Verlag, BerlinGoogle Scholar
  8. Ascherson P (1906) Die geographische Verbreitung der Seegräser. In: Neumayer G (ed) Anleitung zu wissenschaftlichen Beobachtungen auf Reisen. 3rd Ed, Band 2, pp 389–413. Dr. Max Jänecke Verlagsbuchhandlung, HannoverGoogle Scholar
  9. Ascherson P, Graebner P (1907) Potamogetonaceae. In: Engler A (ed) Das Pflanzenreich Heft 31, 1–184. W. Engelmann, LeipzigGoogle Scholar
  10. Ascherson P, Gürke M (1889) Hydrocharitaceae, In: Engler A and Prantl K (eds) Die natürlichen Pflanzenfamilien. 2, 238–258. W. Engelmann, LeipzigGoogle Scholar
  11. Aston HJ (1973) Aquatic Plants of Australia. Melbourne University Press, MelbourneGoogle Scholar
  12. Bentham G (1878) Flora Australiensis: A description of the plants of the Australia Territory. Vol. 7. Reeve, LondonGoogle Scholar
  13. Black JM (1915) Additions to the flora of South Australia, No. 8. Trans R Soc S Aust 39:94–97Google Scholar
  14. Black JM (1922–24) The Flora of South Australia. Government Printer, AdelaideGoogle Scholar
  15. Brown R (1960) (Fascimile ed.). Prodromus Florae Novae Hollandiae et Insulae Van-Diemen (1810), Supplementum primum (1830) by Robert Brown with an introduction by William T. Stearn. Hafner, New YorkGoogle Scholar
  16. Cambridge ML, Kuo J (1979) Two new species of seagrasses from Australia, Posidonia sinuosa and P. angustifolia (Posidoniaceae). Aquat Bot 6:307–328Google Scholar
  17. Campey ML, Waycott, M and Kendrick GA (2000) Re-evaluating species boundaries among members of the Posidonia ostenfeldii species complex (Posidoniaceae)—Morphological and genetic variation. Aquat. Bot. 66: 41–56.Google Scholar
  18. Coyer JA, Hoarau G, Kuo J, Tronholm A, Veldsink J, Olsen JL (2013) Resolution and temporal divergence of the Zosteraceae using one nuclear and three chloroplast loci. Syst Biodivers 11:271–284Google Scholar
  19. Den Hartog C (1957) Hydrocharitaceae. In: van Steenis DGGJ (ed) Fl. Malesia. II. ser I, 5:381–413Google Scholar
  20. Den Hartog C (1970) The Sea-Grasses of the World. North Holland, AmsterdamGoogle Scholar
  21. Den Hartog C, Kuo J (2006). Seagrass taxonomy and biogeography. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 1–23Google Scholar
  22. Doty MS, Stone BC (1966) Two new species of Halophila (Hydrocharitaceae). Brittonia 18:303–306Google Scholar
  23. Ducker SC, Foord NJ, Knox RB (1977) Biology of Australian seagrasses: the genus Amphibolis C. Agardh (Cymodoceaceae). Aust J Bot 25:67–95Google Scholar
  24. Eichler HJ (1965) Supplement to J.M. Black’s Flora of South Australia (2nd edn, 1943–1957). Gov Printer, Adelaide, p 37Google Scholar
  25. Forsskål P (1775) Fl. Aegypt. -Arab. CXX: 157Google Scholar
  26. Greenway M (1979) Halophila tricostata (Hydrocharitceae), a new species of seagrass from the Great Barrier Reef region. Aquat Bot 7:65–70Google Scholar
  27. Hooker JD (1858) The botany of the Antarctic voyage of HM Discovery Ships Erebus and Terror in the years 1839–1843, under command of Captain Sir James Clark Ross. III. Flora Tasmaniae. Vol. 2 (Monocotyledones). Lovell Reeve, LondonGoogle Scholar
  28. Ito Y, Tanaka N (2011) Hybridisation in a tropical seagrass genus Halodule (Cymodoceaceae), inferred from plastid and nuclear DNA phylogenies. Telopea 13:219–231Google Scholar
  29. Jacobs SWL, Williams A (1980) Notes on the genus Zostera s. lat. in New South Wales. Telopea 1:451–455Google Scholar
  30. Jacobs SWL, Les D (2009) New combinations in Zostera (Zosteraceae). Telopea 12:419–423Google Scholar
  31. Jacobs SWL, Les DH, Moody M (2006) New combinations in Australian Zostera (Zosteraceae). Telopea 11:127–128Google Scholar
  32. Kato Y, Aioi K, Omori Y, Takahara N, Satta Y (2003) Phylogenetic analyses of Zostera species based on rbcL and matk nucleotide sequences: implications for the origin and diversification of seagrasses in Japanese water. Genes Genet Syst 78:329–342Google Scholar
  33. Kuo J (2005) A revision of the genus Heterozostera (Setchell) den Hartog (Zosteraceae). Aquat Bot 81:97–140Google Scholar
  34. Kuo J (2011) Enhalus, Thalassia, Halophila and Posidoniaceae, Cymodoceaceae, Zosteraceae. In: Wilson A (ed) Flora of Australia. Vol. 39. Alismatales to Arales, pp 32–44; 111–120; 120–134; 135–143. Aust Biol Res Study, CanberraGoogle Scholar
  35. Kuo J, Cambridge M (1984) A taxonomic study of the Posidonia ostenfeldii complex (Posidoniaceae) with description of four new Australian seagrasses. Aquat Bot 20:267–295Google Scholar
  36. Kuo J, den Hartog C (2001) Seagrass taxonomy and identification key. In: Short FT, Coles RG (eds) Global seagrass research methods. Elsevier, Amsterdam, pp 31–58Google Scholar
  37. Kuo J, Kanamoto Z, Iizumi H, Mukai H (2006) Seagrasses the genus Halophila Thouars (Hydrocharitaceae) from Japan. Acta Phytotax Geobot 57:129–154Google Scholar
  38. Labillardière JJH (1807) Novae Hollandiae Plantarum Specimen 2:131 pp. (p. 126, Pl. 264)Google Scholar
  39. Larkum AWD (1995) Halophila capricorni (Hydrocharitaceae): a new species of seagrass from the Coral Sea. Aquat Bot 51:319–328Google Scholar
  40. Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatids, II. Evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22:443–463Google Scholar
  41. Les DH, Moody ML, Jacobs, SWL, Bayer RJ (2002) Systematics of seagrasses (Zosteraceae) in Australia and New Zealand. Syst Bot 27:468–484Google Scholar
  42. Linnaeus C (1753) Species Plantarum. Vol 1, Laurenti Salvii, StockholmGoogle Scholar
  43. McMillan C (1982) Isozymes in seagrasses. Aquat. Bot. 14: 231–243Google Scholar
  44. McMillan C (1983a) Sulfated flavonoids and leaf morphology of the Halophila ovalis-H. minor complex (Hydrocharitaceae) in the Pacific Islands and Australia. Aquat Bot 16:337–347Google Scholar
  45. McMillian C (1983b) Morphological diversity under controlled conditions for the Halophila ovalis-H. minor complex and the Halodule uninervis complex from Shark Bay, Western Australia. Aquat Bot 17:29–42Google Scholar
  46. McMillan C (1986) Sulfated flavonoids and leaf morphology in the Halophila ovalis-H. minor complex (Hydrocharitaceae) of the Indo-Pacific Ocean. Aquat Bot 25:63–72Google Scholar
  47. McMillan C (1991) Isozymes patterning in marine spermatophytes. In: Triest L (ed) Isozymes in water plants. National Botanic Garden of Belgium, Meise, pp 193–200Google Scholar
  48. McMillan C, Williams SC (1980) Systematic implications of isozymes in Halophila section Halophila. Aquat Bot 9:21–31Google Scholar
  49. McMillan C, Williams SC, Escobar I, Zapata O (1981) Isozymes, secondary compounds and experimental cultures of Australian seagrasses in Halophila, Halodule, Zostera, Amphibolis and Posidonia. Aust J Bot 29:249–260Google Scholar
  50. McMillan C, Young PC, Cambridge MC, Masini R, Walker DI (1983) The status of an endemic Australian seagrass, Cymodocea angustata Ostenfeld. Aquat Bot 17:231–241Google Scholar
  51. Mueller F von (1872–74) Phytographiae Australiae. Government Printer, Melbourne.Google Scholar
  52. Mueller F von (1886) Fragmenta phytographiae Australiae. Vol 6. Govt. Printer, Melbourne, pp 198–199Google Scholar
  53. Mueller F von (1902) List of extra-tropic Western Australian Plants’. Revised and arranged by A. Morrison—Western Australian Year Book for 1900–1901. Vol. 1 (Perth)Google Scholar
  54. Ohba T, Miyata M (2007) Seagrasses of Japan. Hokkaido University Press, Japan (in Japanese and English)Google Scholar
  55. Ostenfeld CH (1914) On the geographical distribution of the seagrasses. A preliminary communication. Proc Roy Soc Victoria 27:179–191Google Scholar
  56. Ostenfeld CH (1916) Contributions to Western Australian botany. Part 1. Dan Bot Ark 2:1–44Google Scholar
  57. Ostenfeld CH (1929) A list of Australian sea-grasses. Roc Roy Soc Victoria, 42 (N.S) Pr. I, 1–4Google Scholar
  58. Petersen G, Seberg O, Cuenca A, Stevenson DW, Thadeo M, Davis JI, Graham S and Ross TG (2015) Phylogeny of the Alismatales (Monocotyledons) and the relationship of Acorus (Acorales?). Cladistics (2015): 1–19Google Scholar
  59. Robertson EL (1984) Seagrasses. In: Womersley HBS (ed) The marine benthic flora of Southern Australia, Part I, pp 57–122Google Scholar
  60. Setchell WA (1933) A preliminary survey of the species of Zostera. Nat Acad Sci Proc 19:810–817Google Scholar
  61. Setchell WA (1935) Geographic elements of the marine flora of the North Pacific Ocean. Am Nat 69:560–577Google Scholar
  62. Shendure J, Ji H (2008) Next generation DNA sequencing. Nature Biotech 26:1135–1145Google Scholar
  63. Sidik JB, Harah MZ (1999) Halodule species from Malaysia—distribution and morphological variations. Aquat Bot 65:33–45Google Scholar
  64. Tanaka N, Kuo J, Omori Y, Nakaoka M, Aioi K (2003) Phylogenetic relationships in the genera Zostera and Heterozostera (Zosteraceae) based on matK sequence data. J Plant Res 116:273–279Google Scholar
  65. Tomlinson PB, Posluszny U (2001) Generic limits in the seagrass family Zosteraceae. Taxon 50:429–437Google Scholar
  66. Uchimura M, Faye EJ, Shimada S, Inoue T, Nakamura Y (2008) A reassessment of Halophila species (Hydrocharitaceae) diversity special reference to Japanese representatives. Bot Mar 51:258–268Google Scholar
  67. Waycott M, Freshwater DW, York RA, Calladine A and Kenworthy WJ (2002) Evolutionary trends in the seagrass genus Halophila (Thouars): insights from molecular phylogeny. Bull Mar Sci 70:1299–1308Google Scholar
  68. Waycott M, Procaccini G, Les DH and Reusch TB (2006) Seagrass evolution, ecology and conservation: a genetic perspective. In Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 25–50Google Scholar
  69. Wilson A (ed) (2011) Flora of Australia Vol 39. Alismatales to Arales. Aust Biol Resources Study, Canberra, AustraliaGoogle Scholar
  70. Womersley HBS (1956) The marine algae of Kangaroo Island. IV. The algal ecology of American River inlet. Aust J Freshw Res 7:64–87Google Scholar
  71. Wood EJF (1959) Some east Australian seagrass communities. Proc Linn Soc NSW 84:218–226Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Microscopy, Microanalysis and CharacterizationThe University of Western AustraliaCrawley, PerthAustralia
  2. 2.The Oceans Institute and School of Plant BiologyThe University of Western AustraliaCrawley, PerthAustralia
  3. 3.Centre for Tropical Water and Aquatic Ecosystem ResearchJames Cook UniversityCairnsAustralia

Personalised recommendations