Skip to main content

Evolution and Biogeography of Seagrasses

Abstract

Seagrasses are an organismal biological group united by their ability to grow in marine environments. As marine flowering plants they have evolved a combined suite of adaptations multiple times enabling the four known lineages containing species of seagrass to survive, and thrive, in the sea. Unlike many other biological groups of plants however, seagrasses are all derived from a single order of flowering plants, the Alismatales. This order, being derived early in the evolution of the monocotyledons, is comprised predominantly of aquatic plants, of all forms–emergent, submerged, freshwater, estuarine and marine. A review of seagrass fossils suggests that new discoveries of seagrass fossils along with confirmation of some earlier finds lead to a clear signal that some seagrass species had a wider distribution in the past compared with today. The discovery of new fossil sites should be encouraged as this will likely produce important valuable information on the evolution of this group. In general the biogeography of seagrasses suggests that these organisms evolved successfully in the Tethys Sea of the Late Cretaceous. However, the modern division into two groups, temperate and tropical tends to suggest that at some point an ecological separation occurred in both the Northern and Southern Hemispheres. There are a disproportionately large number of temperate seagrass species in southern Australia and there is significant endemism shown in Posidonia, Amphibolis and a unique species of Halophila (H. australis). The use of genetic and genomic techniques has begun to explain these distributions but we can expect a much bigger picture to emerge in the near future.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-71354-0_1
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-71354-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2

Notes

  1. 1.

    Current distributions of species of seagrasses in Australia are inferred from data available on Australia’s Virtual Herbarium (avh.ala.org.au), published accounts including Green and Short (2003), Carruthers et al. (2002, 2007a, b), IUCN Redlist distributions (iucnredlist.org see Short et al. 2011), regional mapping and field guide resources (Carter et al. 2016; Waycott et al. 2004, 2014; seagrasswatch.org).

References

  • Anderson CL, Janssen T (2009) Monocots. In: Hedges SB, Kumar S (eds) The timetree of life. Oxford University Press, Oxford, pp 203–212

    Google Scholar 

  • Arber A (1920) Water plants: a study of aquatic angiosperms. Cambridge University Press, Cambridge, 436 pp

    Google Scholar 

  • Ascherson P (1876) Die Geographische Verbreitung der Seegräser. In: Neumayer G (ed) Anleitung zu wissenschaftlichen Beobachtungen auf Reisen, mit besonderer Rücksicht auf die Bedürfnisse der kaiserlichen Marine. Verlag von Robert Oppenheimer, Berlin, pp 359–373

    Google Scholar 

  • Ascherson P (1906) Die Geographische Verbreitung der Seegräser. In: Neumayer G (ed) “Anleitung zu wissenschaftlichen Beobachtungen auf Reisen, vol 2, 3rd edn. Dr. Max Janecke Verlag Buchhandlung, Hannover, pp 389–413

    Google Scholar 

  • Ascherson P, Graebner P (1907) Potamogetonaceae. In: Engler A (ed) Das Pflanzenreich, Leipzig, Engelmann, vol 31, pp 1–184

    Google Scholar 

  • Ashworth AC, Markgraf V (1989) Late Quaternary climatic history of the Chilean Channels based on fossil pollen and beetle analyses, with an analysis of the modern vegetation and pollen rain. J Quat Sci 6:279–291

    CrossRef  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, Massachusetts, USA, 464 pp

    Google Scholar 

  • Battley PF, Melville DS, Schuckard R, Ballance PF (2011) Zostera muelleri as a structuring agent of benthic communities in a large intertidal sandflat in New Zealand. J Sea Res 65:19–27

    CrossRef  Google Scholar 

  • Beavington-Penney SJ, Racey A (2004) Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. Earth Sci Rev 67:219–265

    CrossRef  Google Scholar 

  • Beavington-Penney SJ, Wright VP, Woelkerling WJ (2008) Recognising macrophyte-vegetated environments in the rock record: a new criterion using ‘hooked’ forms of crustose coralline red algae. Sed Geol 166:1–9

    CrossRef  Google Scholar 

  • Benzecry A, Brack-Hanes SD (2008) A new hydrocharitacean seagrass from the Eocene of Florida. Bot J Linn Soc 157:19–30

    CrossRef  Google Scholar 

  • Brasier MD (1975) An outline history of seagrass communities. Paleontology 18:681–702

    Google Scholar 

  • Brongniart A (1828) Prodrome d’une histoire des végétaux fossiles. Levrault (Paris) 13:52–173

    Google Scholar 

  • Brongniart A (1849) Végétaux fossiles. In: d’Orbigny C (ed) Dictionnaire universel d’histoire naturelle. Renard, Martinet & Cie, Paris, 13, 52–173

    Google Scholar 

  • Buchan O (2006) Relationships between large benthic foraminifera and their seagrass habitats, San Salvador, Bahamas. Unpublished M.Sc. thesis, Auburn University. 86 p

    Google Scholar 

  • Burbidge NT (1960) The phytogeography of the Australian region. Aust J Bot 8:75–211

    CrossRef  Google Scholar 

  • Bureau E (1886) Études sur une plante phanérogame: Cymodoceites parisiensis de l’ordre des Naïadées, qui vivait dans les mers de l’époque Éocène. Compt Rend Acad Sci 102:191–193

    Google Scholar 

  • Cambridge ML, Kuo J (1979) Two new species of seagrasses from Australia, Posidonia sinuosa and Posidonia angustifolia (Posidoniaceae). Aquat Bot 6:307–328

    CrossRef  Google Scholar 

  • Carruthers TJB, Dennison WC, Kendrick GA, Waycott M, Walker DI, Cambridge ML (2007a) Seagrasses of south-west Australia: a conceptual synthesis of the world’s most diverse and extensive seagrass meadows. J Exp Mar Biol Ecol 350:21–45

    CrossRef  Google Scholar 

  • Carruthers TJB, Dennison WC, Kendrick GA, Waycott M, Walker DI, Cambridge ML (2007b) Seagrasses of south–west Australia: a conceptual synthesis of the world’s most diverse and extensive seagrass meadows. J Exp Mar Biol Ecol 350:21–45

    CrossRef  Google Scholar 

  • Carruthers TJB, Dennison WC, Longstaff BJ, Waycott M, Abal EG, McKenzie LJ, Lee Long WJ (2002) Seagrass habitats of north-east Australia: models of key processes and controls. Bull Mar Sci 71:1153–1169

    Google Scholar 

  • Carter AB, McKenna SA, Rasheed MA, McKenzie LJ, Coles RG (2016) Seagrass mapping synthesis: a resource for coastal management in the Great Barrier Reef World Heritage Area. Report to the National Environmental Science Programme. Cairns: Reef and Rainforest Research Centre Limited, Queensland, Australia

    Google Scholar 

  • Collinson ME (1983) Palaeofloristic assemblages and palaeoecology of the Lower Oligocene Bembridge Marls, Hamstead Ledge, Isle of Wight. Bot J Linn Soc 86:177–225

    CrossRef  Google Scholar 

  • Conran JG, Mildenhall DC, Lee DE, Lindqvist JK, Shepherd C, Beu AG, Bannister JM, Stein JK (2014) Subtropical rainforest vegetation from Cosy Dell, Southland: plant fossil evidence for Late Oligocene terrestrial ecosystems. NZ J Geol Geophys 57:236–252

    CrossRef  Google Scholar 

  • Conran JG, Bannister JM, Lee DE, Carpenter RJ, Kennedy EM, Reichgelt T, Fordyce RE (2015a) An update of monocot macrofossil data from New Zealand and Australia. Bot J Linn Soc 178(3):394–420

    CrossRef  Google Scholar 

  • Conran JG, Mildenhall DC, Raine JI, Kennedy EM, Lee DE (2015b) The monocot fossil pollen record of New Zealand and its implications for palaeoclimates and environments. Bot J Linn Soc 178:421–440

    CrossRef  Google Scholar 

  • Creed JC, Phillips RC, Van Tussenbroek BI (2003) The seagrasses of the Caribbean. In: Green EP, Short FT (eds) World atlas of seagrasses. University of California Press, Berkley, California USA, pp 234–242

    Google Scholar 

  • Crisci JV, Katinas L, Posadas P (2003) Historical biogeography: an introduction. Harvard University Press, Cambridge, MA, USA, 264 pp

    Google Scholar 

  • Dangeard PJL (1965) Sur deux Chlorococcales marines. Botaniste 48:65–74

    Google Scholar 

  • den Hartog C (1970) The sea-grasses of the world. Verhandelingen der Nederlandsche Akademie van Wetenschappen, Afdeeling Natuurkunde, Tweede Reeks 59, 1–275

    Google Scholar 

  • Dixon FS (1972) Paleoecology of an Eocene mudflat deposit (Avon Park Formation, Claibornian) in Florida: Gainesville, Florida. Unpublished M.Sc. thesis, University of Florida, Gainesville, Florida, 44 p

    Google Scholar 

  • Domning D (1981) Sea cows and seagrasses. Paleobiology 7:417–420

    CrossRef  Google Scholar 

  • Domning DP (2001) Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeogr Palaeoclimatol Palaeoecol 166:27–50

    CrossRef  Google Scholar 

  • Doyle JA (2012) Molecular and fossil evidence on the origin of angiosperms. Ann Rev Earth Planet Sci 40:301–326

    CrossRef  CAS  Google Scholar 

  • Duarte CM (2002) The future of seagrass meadows. Environ Conser 29:192–206

    CrossRef  Google Scholar 

  • Duarte CM, Bandeira S, Romeiras MM (2012) Systematics and ecology of a new species of seagrass (Thalassodendron, Cymodoceaceae) from southeast African coasts. Novon 22:16–24

    CrossRef  Google Scholar 

  • Ebach MC, Murphy DJ, Gonzalez-Orozco CE, Miller JT (2015) A revised area taxonomy of phytogeographical regions within the Australian Bioregionalisation Atlas. Phytotaxa 208:261–277

    CrossRef  Google Scholar 

  • Erwin DM, Stockey RA (1989) Permineralized monocotyledons from the middle Eocene Princeton chert (Allenby Formation) of British Columbia: Alismataceae. Can J Bot 67:2636–2645

    CrossRef  Google Scholar 

  • Eva AN (1980) Pre-Miocene seagrass communities in the Caribbean. Palaeontology 23:231–236

    Google Scholar 

  • Fitzgerald EMG, Velez-Juarbe J, Wells RT (2013) Miocene sea cow (Sirenia) from Papua New Guinea sheds light on sirenian evolution in the Indo-Pacific. J Vertbr Paleontol 33:956–963

    CrossRef  Google Scholar 

  • Friis EM, Crane PR, Pedersen KR (2011) Early flowers and angiosperm evolution. Cambridge University Press, Cambridge, UK, 585 p

    Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2000) Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana 39:226–239

    CrossRef  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2004) Araceae from the Early Cretaceous of Portugal: evidence on the emergence of monocotyledons. Proc Nat Acad Sci USA 101:16565–16570

    CrossRef  PubMed  CAS  PubMed Central  Google Scholar 

  • Fritel PH (1909) Sur l’attribution au genre Posidónia de quelques Caulinites de l’Éocène du Bassin de Paris. Bull Soc Géol France, Series 4:380–385

    Google Scholar 

  • Fritel PH (1914) Sur les Zostères du Calcaire grossier et sur l’assimilation au genre Cymodoceites Bureau des prétendues algues du même gisement. Bull. Soc. Géologique de Fr, séries 5, 13, 354–358

    Google Scholar 

  • Gandolfo MA, Zamaloa M del C, Cúneo NR, Archangelsky A (2009) Potamogetonaceae fossil fruits from the Tertiary of Patagonia, Argentina. Int J Pl Sci 170:419–428

    Google Scholar 

  • Golovneva LB (1987) Novyi vid roda Haemanthophyllum iz rarytskinskoj svity Korjanskogo nagorja. Botanicheskii Zhurnal 72:1127–1131

    Google Scholar 

  • Green AJ, Figuerola J, Sánchez MI (2002) Implications of waterbird ecology for the dispersal of aquatic organisms. Acta Oecol 23:177–189

    CrossRef  Google Scholar 

  • Green EP, Short FT (2003) World atlas of seagrasses. University of California Press, Berkley, California USA, 298 pp

    Google Scholar 

  • Gregor H-J (1991) Ein neues fossiles Seegras – Posidocea frickhingeri nov. gen. et spec. im Paläogen Oberitaliens (Verona). Zeitschrift Documenta Naturae 65:1–11

    Google Scholar 

  • Grímsson F, Zetter R, Halbritter H, Grimm GW (2014) Aponogeton pollen from the Cretaceous and Paleogene of North America and West Greenland: Implications for the origin and palaeobiogeography of the genus. Rev Palaeobot Palynol 200:151–187

    CrossRef  Google Scholar 

  • Guiry MD (2014) Halochloris P.J.L. Dangeard, 1965: 68. In: Guiry MD, Guiry GM (eds) AlgaeBase. World-wide electronic publication. Galway, Ireland, National University of Ireland. Retrieved 26 Feb 2014. http://www.algaebase.org

  • Haggard KK, Tiffney BH (1997) The flora of the early Miocene Brandon Lignite, Vermont, USA. VIII. Caldesia (Alismataceae). Am J Bot 84:239–252

    CrossRef  PubMed  CAS  Google Scholar 

  • Harzhauser M (2014) A seagrass-associated early Miocene Indo-Pacific gastropod fauna from South-West India (Kerala). Palaeontographica 302:73–178

    CrossRef  Google Scholar 

  • Hayward BW, Grenfell HR, Sandiford A, Shane PR, Morley MS, Alloway BV (2002) Foraminiferal and molluscan evidence for the Holocene marine history of two breached maar lakes, Auckland, New Zealand. New Zealand J Geol Geophys 45:467–479

    CrossRef  Google Scholar 

  • Heck KL, McCoy ED (1979) The biogeography of seagrasses: evidence from associated organisms. Proc. Int Symp Mar Biogeogr Evol South Hemisphere 1:109–128

    Google Scholar 

  • Hertweck KL, Kinney MS, Stuart SA, Maurin O, Mathews S, Chase MW, Gandolfo MA, Pires JC (2015) Phylogenetics, divergence times and diversification from three genomic partitions in monocots. Bot J Linn Soc 178:375–393

    CrossRef  Google Scholar 

  • Hill RS (ed) (1994) History of the Australian vegetation: Cretaceous to Recent. Cambridge. Cambridge University Press. Cambridge, UK, 433 p

    Google Scholar 

  • Hooker JJ, Grimes ST, Mattey DP, Collinson ME, Sheldon ND (2009) Refined correlations of the UK late Eocene–early Oligocene Solent Group and timing of its climate history. In: Koeberl C, Montanari A (eds) The Late Eocene earth—hothouse, icehouse, and impacts (GSA Special Papers No. 452), Geol Soc Am, pp 179–195, Boulder, Colorado

    Google Scholar 

  • Iles WJD, Smith SY, Gandolfo MA, Graham SW (2015) Monocot fossils suitable for molecular dating analyses. Bot J Linn Soc 178:346–374

    CrossRef  Google Scholar 

  • Ivany LC, Portell RW, Jones DS (1990) Animal-plant relationships and paleobiogeography of an Eocene seagrass community from Florida. Palaios 5:244–258

    CrossRef  Google Scholar 

  • Jacobs SWL, Les DH, Moody ML (2006) New combinations in Australasian Zostera (Zosteraceae). Telopea 11:127–128

    CrossRef  Google Scholar 

  • Janssen T, Bremer K (2004) The age of monocot groups inferred from 800 + rbcL sequences. Bot J Linn Soc 146:385–398

    CrossRef  Google Scholar 

  • Kendrick GA, Waycott M, Carruthers TJB, Cambridge ML, Hovey R, Krauss SL et al (2012) The central role of dispersal in the maintenance and persistence of seagrass populations. Biosciences 62:56–65

    CrossRef  Google Scholar 

  • Kilminster K, McMahon K, Waycott M, Kendrick GA, Scanes P, McKenzie L, O’Brien KR, Lyons M, Ferguson A, Maxwell P, Glasby T, Udy J (2015) Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci Total Environ 534:97–109

    CrossRef  PubMed  CAS  Google Scholar 

  • Kirkman H (1997) Seagrasses of Australia, Australia: State of the Environment Technical Paper Series (Estuaries and the Sea). Department of the Environment, Canberra, 36 pp

    Google Scholar 

  • Knox GA (1963) The biogeography and intertidal ecology of the Australian coasts. Oceanogr Mar Biol Ann Rev 1:341–404

    Google Scholar 

  • Koriba K, Miki S (1931) On Archeozostera from the Izumi Sandstone. Chikyu (The Globe) 15:165–201 [in Japanese]

    Google Scholar 

  • Koriba K, Miki S (1958) Archeozostera, a new genus from Upper Cretaceous in Japan. Palaeobotanist 7:107–110

    Google Scholar 

  • Kuo J, Cambridge ML (1984) A taxonomic study of the Posidonia ostenfeldii complex (Posidoniaceae) with description of four new Australian seagrasses. Aquat Bot 20:267–295

    CrossRef  Google Scholar 

  • Larkum AWD, West RJ (1983) Stability, depletion and restoration of seagrass beds. Proc Linn NSW 106:201–212

    Google Scholar 

  • Larkum AWD, den Hartog C (1989) Evolution and biogeography of seagrasses. In: Larkum AWD, McComb AJ, Shepherd S (eds) Biology of seagrasses. A treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, Amsterdam, pp 112–156

    Google Scholar 

  • Larkum AWD, Orth RJ, Duarte C (2006) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, p 512

    Google Scholar 

  • Laurent L, Laurent JL (1926) Étude sur une plante fossile des dépôts du tertiaire marin du sud de Célèbes, Cymodocea micheloti (Wat.) Nob. Jaarboek van het Mijnwezen in Nederlandsch. Indie 54:167–190

    Google Scholar 

  • Lee DE, Lee WG, Mortimer N (2001) Where and why have all the flowers gone? Depletion and turnover in the New Zealand Cenozoic angiosperm flora in relation to palaeogeography and climate. Australian Journal of Botany. 49:341–356

    Google Scholar 

  • Lee DE, Lindqvist JK, Beu AG, Robinson JH, Ayress MA, Morgans HEG, Stein JK (2014) Geological setting and diverse fauna of a Late Oligocene rocky shore ecosystem, Cosy Dell, Southland. New Zealand J Geol Geophys 57:195–208

    CrossRef  Google Scholar 

  • Leonard-Pingel JS (2005) Molluscan taphonomy as a proxy for recognizing fossil seagrass beds. Unpublished M.Sc. thesis, Louisiana State University and Agricultural and Mechanical College, 132 p

    Google Scholar 

  • Les DH, Tippery NP (2013) In time and with water… the systematics of alismatid monocotyledons. In: Wilkin P, Mayo SJ (eds) Early events in monocot evolution. Cambridge University Press, Cambridge, UK, pp 118–164

    Google Scholar 

  • Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in alismatidae, II: Evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22:443–463

    CrossRef  Google Scholar 

  • Les DH, Crawford DJ, Kimball RT, Moody ML, Landolt E (2003) Biogeography of discontinuously distributed hydrophytes: a molecular appraisal of intercontinental disjunctions. Int J Plant Sci 164:917–932

    CrossRef  Google Scholar 

  • Lockhart PJ, Larkum AWD, Becker M, Penny D (2015) We are still learning about the nature of species and their evolutionary relationships. Ann Missouri Bot Gard 11(2014):99. https://doi.org/10.3417/2012084

    CrossRef  Google Scholar 

  • Lumbert SH, den Hartog C, Phillips RC, Olsen FS (1984) The occurrence of fossil seagrasses in the Avon Park Formation (late middle Eocene), Levy County, Florida (U.S.A.). Aquat Bot 20:121–129

    CrossRef  Google Scholar 

  • Machin J (1971) Plant microfossils from Tertiary deposits of the Isle of Wight. New Phytol 70:851–872

    CrossRef  Google Scholar 

  • McCoy ED, Heck KL (1976) Biogeography of corals, seagrasses, and mangroves: An alternative to the center of origin concept. Syst Zool 25:201–210

    Google Scholar 

  • McMahon KM, Waycott M (2009) New record for Halophila decipiens Ostenfeld in Kenya based on morphological and molecular evidence. Aquat Bot 91:318–320

    Google Scholar 

  • McMahon K, van Dijk K-J, Ruiz-Montoya L, Kendrick GA, Krauss SL, Waycott M, Verduin J, Lowe R, Statton J, Brown E, Duarte CM (2014) The movement ecology of seagrasses. Proc Roy Soc B Biol Sci 281:20140878–20140879

    CrossRef  Google Scholar 

  • McMillan C, Phillips RC (1979) Differentiation in habitat response among populations of New World seagrass. Aquat Bot 7:185–196

    CrossRef  CAS  Google Scholar 

  • Mai DH (2000) The Middle and Upper Miocene floras of Meuro and Rauno sequences in the Lusatica region. Part I: waterferns, conifers, monocotyledons. Palaeontographica Abteilung B: Paläophytologie 256:1–68

    Google Scholar 

  • Marsh H, O’Shea TJ, Reynolds JEI (2011) The ecology and conservation of Sirenia: Dugongs and manatees. Cambridge University Press, Cambridge, U.K., p 536

    CrossRef  Google Scholar 

  • Massalongo AB (1850) Schizzo geognostico sulla valle del Progno o torrente d’Illasi, con un saggio sopra la flora primordiale del Monte Bolca. Antonelli, Verona, 77 p

    Google Scholar 

  • Massalongo AB (1851) Sopra le piante fossili dei terreni terziari del Vicentino osservazioni. A Bianchi, Padova, 263 p

    Google Scholar 

  • Massalongo AB (1852) Conspectus florae tertiariae orbis primaevi. A Bianchi, Patavii, 37 p

    Google Scholar 

  • Massalongo AB (1856) Studi Paleontologici. Tipografia di Giuseppe Antonelli, Verona, 55 p

    Google Scholar 

  • Massalongo AB (1859) Syllabus plantarum fossilium hucusque in formationibus tertiariis agri veneti detectarum. Typis A Merlo, Verona, 179 p

    Google Scholar 

  • Massalongo AB, Lotze M (1859) Saggio fotografico di alouni animali e plante fossili dell’agro Veronese (= Specimen photographicum animalum quorundam plantarumque fossilium, agri Veronensis). Vicentini-Franchini, Verona, 101 p

    Google Scholar 

  • Meehan AJ, West RJ (2000) Recovery times for a damaged Posidonia australis bed in south-eastern Australia. Aquat Bot 67:161–167

    CrossRef  Google Scholar 

  • Mildenhall DC (1980) New Zealand Late Cretaceous and Cenozoic plant biogeography: a contribution. Palaeogeogr Palaeoclimatol Palaeoecol 31:197–233

    CrossRef  Google Scholar 

  • Mukai H (1993) Biogeography of the tropical seagrasses in the Western Pacific. Aust J Mar Freshw Res 44:1–17

    Google Scholar 

  • Nakano T, Ozawa T (2007) Worldwide phylogeography of limpets of the order Patellogastropoda: molecular, morphological and palaeontological evidence. J Mollusc Stud 73:79–99

    CrossRef  Google Scholar 

  • Oishi S (1931) Discovery of Archeozostera and Sigillaria like impressions in Hokkaido. J Geog Tokyo 43:717–719

    Google Scholar 

  • Oliver WRB (1928) The flora of the Waipaoa Series (later Pliocene) of New Zealand. Trans New Zealand Inst 59:287–303

    Google Scholar 

  • Ostenfeld CH (1915) On the geographical distribution of the seagrasses. A prelimninary communication. Proc Roy Soc Victoria 27:179–191

    Google Scholar 

  • Ostenfeld CH (1927a) Meeresgräse 1. Marine Hydrocharitaceae. In: Hanning E, Winkler H (eds) Phlanzenareale I, 35–38 (maps pp 21–25)

    Google Scholar 

  • Ostenfeld CH (1927b) Meeresgräse II. Marine Potomagetonaceae. In: Hanning E, Winkler H (eds) Phlanzenareale I, 46–50 (maps pp 34–39)

    Google Scholar 

  • Orth RJ, Carruthers TJB, Dennison WC, Duarte CM, Fourqurean JW, Heck KL, Hughes AR, Kendrick GA, Kenworthy WJ, Olyarnik S, Short FT, Waycott M, Williams SL (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996

    CrossRef  Google Scholar 

  • Parker JH, Gischler E (2015) Modern and relict foraminiferal biofacies from a carbonate ramp, offshore Kuwait, northwest Persian Gulf. Facies 61:10. https://doi.org/10.1007/s10347-015-0437-5

  • Pole MS (1993) Early Miocene flora of the Manuherikia Group, New Zealand. 9. Miscellaneous leaves and reproductive structures. J Roy Soc New Zealand 23:345–391

    CrossRef  Google Scholar 

  • Raine JI, Mildenhall DC, Kennedy EM (2011) New Zealand fossil spores and pollen: an illustrated catalogue, 4th edn (GNS Science Miscellaneous Series No. 4). Retrieved 20 Apr 2012, updated 5 May 2013. http://www.gns.cri.nz/what/earthhist/fossils/spore_pollen/catalog/index.htm

  • Randazzo AF, Saroop HC (1976) Sedimentology and paleoecology of Middle and Upper Eocene carbonate shoreline sequences, Crystal River, Florida, USA. Sed Geol 15:259–291

    CrossRef  Google Scholar 

  • Raven PH, Axelrod DI (1974) Angiosperm biogeography and past continental movements. Ann Missouri Bot Gard 61:539–673

    CrossRef  Google Scholar 

  • Reich S (2014) Gastropod associations as a proxy for seagrass vegetation in a tropical, carbonate setting (San Salvador, Bahamas). Palaois 29:467–482

    CrossRef  Google Scholar 

  • Reich S, Di Martino E, Todd JA, Wesselingh FP, Renema W (2015) Indirect paleo-seagrass indicators (IPSIs): a review. Earth Sci Rev 143:161–186

    CrossRef  Google Scholar 

  • Reusch TBH (2001a) Fitness-consequences of geitonogamous selfing in a clonal marine angiosperm (Zostera marina). J Evol Biol 14:129–138

    CrossRef  PubMed  CAS  Google Scholar 

  • Reusch TBH (2001b) New markers—old questions: population genetics of seagrasses. Mar Ecol Prog Ser 211:261–274

    CrossRef  CAS  Google Scholar 

  • Reuter M, Piller WE, Harzhauser M, Kroh A, Rögl F, Ćorić S (2011) The Quilon Limestone, Kerala Basin, India: an archive for Miocene Indo-Pacific seagrass beds. Lethaia 44(1):76–86

    CrossRef  Google Scholar 

  • Reynolds LK, McGlathery KJ, Waycott M (2012) Genetic diversity enhances restoration success by augmenting ecosystem services. PLoS ONE 7:e38397

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Riley MG, Stockey RA (2004) Cardstonia tolmanii gen. et sp. nov. (Limnocharitaceae) from the Upper Cretaceous of Alberta, Canada. Int J Plant Sci 165:897–916

    CrossRef  Google Scholar 

  • Ross TG, Barrett CF, Soto Gomez M, Lam VK-Y, Henriquez CL, Les DH, Davis JI, Cuenca A, Petersen G, Seberg O et al (2015) Plastid phylogenomics and molecular evolution of Alismatales. Cladistics early online. https://doi.org/10.1111/cla.12133

  • Sánchez Botero CA, Oboh-ikuenobe FE, Macphail M (2013) First fossil pollen record of the Northern Hemisphere species Aglaoreidia cyclops Erdtman, 1960 in Australia. Alcheringa 37(3):415–419

    CrossRef  Google Scholar 

  • Sculthorpe CD (1967) The biology of aquatic vascular plants. Edward Arnold, London, p 619

    Google Scholar 

  • Setchell, WA (1915) The law of temperature connected with the distribution of marine algae. Ann Missouri Bot Gar 2:287–285

    Google Scholar 

  • Setchell WA (1920) Geographical distribution of the marine spermatophytes. Bull Torrey Bot Club 47:563–579

    CrossRef  Google Scholar 

  • Setchell WA (1935) Geographical elements of the marine flora of the North Pacific Ocean. Amer Nat 69:560–577

    CrossRef  Google Scholar 

  • Short F, Carruthers T, Dennison W, Waycott M (2007) Global seagrass distribution and diversity: a bioregional model. Exp Mar Biol Ecol 350:3–20

    CrossRef  Google Scholar 

  • Short F, Moore G, Peyton K (2010) Halophila ovalis in the tropical Atlantic Ocean. Aquat Bot 93:141–146

    CrossRef  Google Scholar 

  • Short F, Polidoro B, Livingstone S, Carpenter K, Bandeira S, Bujang J, Calumpong H, Carruthers T, Coles R, Dennison W, Erftemeijer P, Fortes M, Freeman A, Jagtap T, Kamal A, Kendrick G, Kenworthy W, LaNafie Y, Nasution I, Orth R, Prathep A, Sanciangco J, Tussenbroek B, Vergara S, Waycott M, Zieman J (2011) Extinction risk assessment of the world’s seagrass species. Biol Cons 144:1961–1971

    CrossRef  Google Scholar 

  • Sille NP, Collinson ME, Kucera M, Hooker JJ (2006) Morphological evolution of Stratiotes through the Paleogene in England: an example of microevolution in flowering plants. Palaios 21(3):272–288

    CrossRef  Google Scholar 

  • Smith SY (2013) The fossil record of noncommelinid monocots. In: Wilkin P, Mayo SJ (eds) Early events in monocot evolution. Cambridge University Press, Cambridge, UK, pp 29–59

    CrossRef  Google Scholar 

  • Springer MS, Signore AV, Paijmans JLA, Velez-Juarbe J, Domning DP et al (2015) Interordinal gene capture, the phylogenetic position of Steller’s sea cow based on molecular and morphological data, and the macroevolutionary history of Sirenia. Mol Phylogenet Evol 91:178–193

    CrossRef  PubMed  Google Scholar 

  • Stockey RA (2006) The fossil record of basal monocots. In: Columbus JT, Friar EA, Porter JM, Prince LM, Simpson MG (eds) Monocots: comparative biology and evolution (excluding Poales). Claremont, CA, Rancho Santa Ana Botanic Garden, pp 91–106

    Google Scholar 

  • The Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181:1–20

    Google Scholar 

  • Teske PR, Beheregaray LB (2009) Evolution of seahorses’ upright posture was linked to Oligocene expansion of seagrass habitats. Biol Lett 5(4):521–523

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Thomas BA, Spicer RA (1984) Comparative leaf architectural analysis of Cretaceous radiating angiosperms. In: Spicer RA, Thomas BA (eds) Systematic and taxonomic approaches in palaeobotany. Clarendon Press, Oxford, pp 221–232

    Google Scholar 

  • Ticli K (2014) Population structure and genetic connectivity of the seagrass Zostera muelleri across its geographic range with an emphasis on South Australia. University of Adelaide, Honours Thesis. Supervisors: Michelle Waycott, Kor-jent van Dijk, Bayden Russell, 45 pp

    Google Scholar 

  • Uchimura M, Faye EJ, Shimada S, Inoue T, Nakamura Y (2008) A reassessment of Halophila species (Hydrocharitaceae) diversity with special reference to Japanese representatives. Bot Mar 51:258–268

    CrossRef  Google Scholar 

  • Unabia CRC (2011) The snail Smaragdia bryanae (Neritopsina, Neritidae) is a specialist herbivore of the seagrass Halophila hawaiiana (Alismatidae, Hydrocharitaceae). Invertebr Biol 130(2):100–114

    CrossRef  Google Scholar 

  • Unger F (1847) Chloris protogaea. Beiträge zur Flora der Vorwelt. Leipzig, W. Engelmann. 150 p

    Google Scholar 

  • van der Ham RWJM, van Konijnenburg-van Cittert JHA, Indeherberge L (2007) Seagrass foliage from the Maastrichtian type area (Maastrichtian, Danian, NE Belgium, SE Netherlands). Rev Palaeobot Palynol 144(3–4):301–321

    Google Scholar 

  • van Dijk KJ, van Tussenbroek BI, Jimenez-Duran K, Marquez-Guzman JG, Ouborg J (2009) High levels of gene flow and low population genetic structure related to high dispersal potential of a tropical marine angiosperm. Mar Ecol Prog Ser 390:67–77

    CrossRef  Google Scholar 

  • Vélez-Juarbe J (2014) Ghost of seagrasses past: using sirenians as a proxy for historical distribution of seagrasses. Palaeogeogr Palaeoclimatol Palaeoecol 400(1):41–49

    CrossRef  Google Scholar 

  • Voight E, Domke W (1955) Thalassocharis bosqueti Debey ex Miquel ein strukturell einhaltenes Seegras aus der Hollandischen Kreide. Mitt Geol StInst Hamb 24:87–102

    Google Scholar 

  • Walker DI (1991) The effect of sea temperature on seagrasses and algae on the Western Australian coastline. J Royal Soc W Aust 74:71–77

    Google Scholar 

  • Watelet A (1866) Description des plantes fossiles du Bassin de Paris. Paris, J.-B. Baillère et Fils, 295 p

    Google Scholar 

  • Waycott M (1995) Assessment of genetic variation and clonality in the seagrass Posidonia australis using RAPD and allozyme analysis. Mar Ecol Prog Ser 116:289–295

    CrossRef  CAS  Google Scholar 

  • Waycott M, McMahon K, Lavery P (2014a) A guide to southern temperate seagrasses. CSIRO Publishing, Melbourne, p 112 pp

    Google Scholar 

  • Waycott M, Freshwater DW, York RA, Robert A, Calladine A, Kenworthy WJ (2002) Evolutionary trends in the seagrass genus Halophila (Thouars): insights from molecular phylogeny. Bull Mar Sci 71:1299–1308

    Google Scholar 

  • Waycott M, McMahon KM, Mellors JE, Calladine A, Kleine D (2004) A guide to tropical seagrasses of the Indo-West Pacific. James Cook University, Townsville, 72 pp

    Google Scholar 

  • Waycott M, Procaccini G, Les DH, Reusch TBH (2006) Seagrass evolution, ecology and conservation: a genetic perspective. In: Larkum AWD, Orth, RJ Duarte C (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 25–50

    Google Scholar 

  • Waycott M, McMahon K, Lavery P (2014) A guide to the southern temperate seagrasses. CSIRO Publishing, Canberra, 109 pp

    Google Scholar 

  • Wilde V, Roghi G, Martinetto E (2014) The Pesciara-Monte Postale Fossil-Lagerstätte: 3. Flora. In: Papazzoni CA, Guisberti L, Carnevale G, Roghi G, Bassi D, Zorzin R (eds) Excursion guidebook CBEP 2014-EPPC 2014-Taphos 2014 conferences. The Bolca Fossil-Lagerstätten: a window into the Eocene world (Reconditi della Società Paleontologica Italiana, vol 4). Modena, Società Paleontologica Italiana, pp 65–71

    Google Scholar 

  • Willette DA, Ambrose RF (2009) The distribution and expansion of the invasive seagrass Halophila stipulacea in Dominica, West Indies, with a preliminary report from St Lucia. Aquat Bot 91:137–142

    CrossRef  Google Scholar 

  • Williams SL (1995) Surfgrass (Phyllospadix torreyi) reproduction—reproductive phenology, resource-allocation, and male rarity. Ecology 76:1953–1970

    CrossRef  Google Scholar 

  • Worthy TH, Tennyson AJD, Jones C, McNamara JA, Douglas BJ (2007) Miocene waterfowl and other birds from central Otago, New Zealand. J Syst Paleontol 5(1):1–39

    CrossRef  Google Scholar 

  • Worthy TH, Tennyson AJD, Hand SJ, Scofield RP (2008) A new species of the diving duck Manuherikia and evidence for geese (Aves: Anatidae: Anserinae) in the St Bathans Fauna (Early Miocene), New Zealand. J Royal Soc New Zealand 38(2):97–114

    CrossRef  Google Scholar 

  • Wright CA, Murray JW (1972) Comparisons of modern and palaeogene foraminiferal distributions and their environmental implications. Mem Bur Rech Geol Minier 79:477–484 (Wright, C.A.)

    Google Scholar 

  • Zhao LC, Collinson ME, Li C-S (2004) Fruits and seeds of Ruppia (Potamogetonaceae) from the Pliocene of Yushe Basin, Shanxi, northern China and their ecological implications. Bot J 145:317–329

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony W. D. Larkum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Larkum, A.W.D., Waycott, M., Conran, J.G. (2018). Evolution and Biogeography of Seagrasses. In: Larkum, A., Kendrick, G., Ralph, P. (eds) Seagrasses of Australia. Springer, Cham. https://doi.org/10.1007/978-3-319-71354-0_1

Download citation