Skip to main content

Nanomaterials-Based Adsorbents for Water and Wastewater Treatments

  • Chapter
  • First Online:
Book cover Emerging Trends of Nanotechnology in Environment and Sustainability

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

Abstract

Water is very essential for all existence on earth. Water being a universal solvent, it easily dissolves other substances. Rain showers, surface water, and other flowing water dissolve various substances like gases, microorganisms, etc. and become contaminated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dave S, Sharma R (2015) Use of nanoparticles in water treatment: a review. Int Res J Environ Sci 4(10):103–106, International Science Congress Association

    Google Scholar 

  2. Prachi PG, Madathil D, Nair AB (2013) Nanotechnology in waste water treatment: a review. Int J Chem Tech Res 5(5):2303–2308, (CODEN, USA)

    Google Scholar 

  3. Chen C, Wang X (2006) Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res 45:9144–9149; Moreno-Castilla C, Álvarez-Merino MA, López-Ramón MV, Rivera-Utrilla J (2004) Cadmium ion adsorption on different carbon adsorbents from aqueous solutions. Effect of surface chemistry, pore texture, ionic strength, and dissolved natural organic matter. Langmuir 20:8142–8148

    Google Scholar 

  4. Wang X, Guo Y, Yang L, Han M, Zhao J (2012) Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J Environ Anal Toxicol 2:154; Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    Google Scholar 

  5. Prachi PG, Madathi D, Nair AB (2013) Nanotechnology in waste water treatment: a review. Int J Chem Technol Res 5:2303–2308

    CAS  Google Scholar 

  6. Pan B, Xing BS (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013

    Article  CAS  Google Scholar 

  7. Lu CS, Chiu H, Liu CT (2006) Removal of zinc[II] from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45(8):2850–2855; Deliyanni EA, Bakoyannakis DN, Zouboulis AI, Matis KA (2003) Sorption of As[V] ions by akaganeite-type nanocrystals. Chemosphere 50(1):155–163; Mayo JT, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin VL (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8(1–2):71

    Google Scholar 

  8. Diallo MS, Christie S, Swaminathan P, Johnson JH, Goddard WA (2005) Dendrimer enhanced ultrafiltration. 1. Recovery of Cu[II] from aqueous solutions using PAMAM dendrimers with ethylenediamine core andterminal NH2 groups. Environ Sci Technol 39(5):1366–1377

    Article  CAS  Google Scholar 

  9. Ramakrishna S, Fujihara K, Teo WE et al (2006) Electrospun nano fibers: solving global issues. Mater Today 9:40–50

    Article  CAS  Google Scholar 

  10. Maximous N, Nakhla G, Wong K, Wan W (2010) Optimization of Al2O3/PES membranes for wastewater filtration. Sep Purif Technol 73:294–301

    Article  CAS  Google Scholar 

  11. Choi H, Stathatos E, Dionysiou DD (2006) Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Appl Catal B Environ 63:60–67; Wu L, Ritchie SMC (2008) Enhanced dechlorination of trichloroethylene by membrane-supported Pd-coated iron nanoparticles. Environ Prog 27:218–224

    Google Scholar 

  12. Lin HF, Ravikrishna R, Valsaraj KT (2002) Reusable adsorbents for dilute solution separation. 6. Batch and continuous reactors for the adsorption and degradation of 1,2-dichlorobenzene from dilute wastewater streams using titania as a photocatalyst. Sep Purif Technol 28:87–102; Molinari R, Palmisano L, Drioli E, Schiavello M (2002) Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification. J Membr Sci 206:399–415

    Google Scholar 

  13. Sun D, Meng TT, Loong TH, Hwa TJ (2004) Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane. Water Sci Technol 49:103–110

    CAS  Google Scholar 

  14. Karnik BS, Davies SH, Baumann MJ, Masten SJ (2005) Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration. Environ Sci Technol39:7656–7661; Karnik BS, Davies SH, Chen KC (2005) Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes. Water Res (2005)39:728–734

    Google Scholar 

  15. Mauter MS, Wang Y, Okemgbo KC (2011) Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. Appl Mater Interfaces 3:2861–2868; Zodrow K, Brunet L, Mahendra S (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removalWater Res 43:715–723

    Google Scholar 

  16. De Gusseme B, Hennebel T, Christiaens E et al (2011) Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes. Water Res 45:1856–1864

    Article  Google Scholar 

  17. Jeong BH, Hoek EMV, Yan YS et al (2007) Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J Membr Sci 294:1–7

    Article  CAS  Google Scholar 

  18. Lind ML, Ghosh AK, Jawor A (2009) Influence of zeolite crystal size on zeolite polyamide thin film nanocomposite membranes. Langmuir 25:10139–10145; Holt JK, Park HG, Wang YM (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037

    Google Scholar 

  19. Zhao X, Lv L, Pan B et al (2011) Polymer-suported nanocomposites for environmental application: a review. Chem Eng J 170:381–394

    Article  CAS  Google Scholar 

  20. Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16:307–325

    Article  CAS  Google Scholar 

  21. Deepa M et al (2013) Int J Chem Tech Res 5(5):2303–2308; Samanta HS, Das R, Bhattachajee C (2016) Influence of nanoparticles for wastewater treatment—a short review. Austin Chem Eng 3(3):1036; Prakash S, Sharma N, Ahmad A, Ghosh P (2011) Synthesis of AgNPs by B. Cereus bacteria and their antimicrobial potential. J Biomater Nanobiotechnol 2:15–16

    Google Scholar 

  22. http://nptel.ac.in/courses/118107015/module5/lecture9/lecture9.pdf

  23. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  CAS  Google Scholar 

  24. Pyrzynska K, Bystrzejewski M (2010) Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids Surf A 362:102–109

    Article  CAS  Google Scholar 

  25. Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49–52

    Article  CAS  Google Scholar 

  26. Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231. http://nptel.ac.in/courses/118107015/41; Afzali D, Jamshidi R, Ghaseminezhad S, Afzali Z (2011) Preconcentration procedure trace amounts of palladium using modified multiwalled carbon nanotubes sorbent prior to flame atomic absorption spectrometry. Arab J Chem 5:461–466

  27. Gupta VK, Agarwal S, Saleh TA (2011) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185:17–23

    Article  CAS  Google Scholar 

  28. Zhao X, Jia Q, Song N, Zhou W, Li Y (2010) Adsorption of Pb(II) from an aqueous solution by titanium dioxide/carbon nanotube nanocomposites: kinetics, thermodynamics, and Isotherms. J Chem Eng Data 55:4428–4433

    Article  CAS  Google Scholar 

  29. Kosa SA, Al-Zhrani G, Abdel Salam M (2012) Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem Eng J 181–182:159–168

    Article  Google Scholar 

  30. Cho HH, Wepasnick K, Smith BA, Bangash FK, Fairbrother DH, Ball WP (2009) Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir 26:967–981

    Article  Google Scholar 

  31. Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    Article  CAS  Google Scholar 

  32. Kosa SA, Al-Zhrani G, Abdel Salam M (2012) Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chem Eng J 181–182:159–168; Rao G.P, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58(1):224–231. http://nptel.ac.in/courses/118107015/41

  33. Dunwell group in Hong Kong http://www.dunwellgroup.com

  34. Gao W, Majumder M, Alemany LB, Narayanan TN, Ibarra MA, Pradhan BK, Ajayan PM (2011) Engineered graphite oxide materials for application in water purification. ACS Appl Mater Interfaces 3(6):1821–1826

    Article  CAS  Google Scholar 

  35. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sugaraj Samuel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gopalakrishnan, I., Sugaraj Samuel, R., Sridharan, K. (2018). Nanomaterials-Based Adsorbents for Water and Wastewater Treatments. In: Sridharan, K. (eds) Emerging Trends of Nanotechnology in Environment and Sustainability. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-319-71327-4_11

Download citation

Publish with us

Policies and ethics