Advertisement

Superiority and Non-inferiority Phase III Oncology Trials

  • Everardo D. Saad
Chapter

Abstract

Phase III trials occupy the top hierarchical position in clinical research, because they are the ideal scenario for comparing two or more competing therapies. Most phase III trials in oncology aim to demonstrate the superiority of a new treatment in comparison with control, but so-called non-inferiority phase III trials assess whether a more convenient, less toxic, or more affordable intervention is at least as efficacious as an existing standard of care. Ideally, the control arm in phase III trials should be the best available standard of care at the time of trial design and conduct. Determining the sample size is of special importance in phase III trials, given their attempt to allow for sound statistical conclusions upon their completion. A simple mnemonic (the ABCDE of sample-size calculation; alpha, or the type-I error; beta, or the type-II error; control, or the expected result in the control arm; dropout, or the expected rate of loss to follow-up or loss of data; experimental, or the desired result in the experimental arm, using the same parameter type as for C) is offered to facilitate interaction between clinical trialists and statisticians. Blocked randomization, stratification, minimization, blinding, and analyses based on the intent-to-treat principle are additional safeguards for reaching unbiased conclusions from phase III trials, whereas non-inferiority and factorial trials present some additional features that warrant special attention in their design and interpretation.

Keywords

Phase III clinical trial Random allocation Endpoint Oncology Intent-to-treat 

References

  1. 1.
    Buyse ME, Staquet MJ, Sylvester RJ. Cancer clinical trials: methods and practice. New York: Oxford University Press; 1984.Google Scholar
  2. 2.
    Girling D, Parmar M, Stenning S, et al. Clinical trials in cancer. Oxford: Oxford University Press; 2003.Google Scholar
  3. 3.
    Schwartz D, Lellouch J. Explanatory and pragmatic attitudes in therapeutical trials. J Chronic Dis. 1967;20:637–48.CrossRefPubMedGoogle Scholar
  4. 4.
    Thorpe KE, Zwarenstein M, Oxman AD, et al. A pragmatic-explanatory continuum indicator summary (PRECIS): a tool to help trial designers. CMAJ. 2009;180:E47–57.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sherman RE, Anderson SA, Dal Pan GJ, et al. Real-world evidence - what is it and what can it tell us? N Engl J Med. 2016;375:2293–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Peto R, Pike MC, Armitage P, et al. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. I. Introduction and design. Br J Cancer. 1976;34:585–612.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Green SB. Randomized clinical trials: design and analysis. Semin Oncol. 1981;8:417–23.PubMedGoogle Scholar
  8. 8.
    Freidlin B, Korn EL, Gray R, Martin A. Multi-arm clinical trials of new agents: some design considerations. Clin Cancer Res. 2008;14:4368–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.CrossRefPubMedGoogle Scholar
  10. 10.
    Sydes MR, Parmar MK, James ND, et al. Issues in applying multi-arm multi-stage methodology to a clinical trial in prostate cancer: the MRC STAMPEDE trial. Trials. 2009;10:39.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    James ND, Sydes MR, Clarke NW, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 2016;387:1163–77.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Cortes J, O’Shaughnessy J, Loesch D, et al. Eribulin monotherapy versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): a phase 3 open-label randomised study. Lancet. 2011;377:914–23.CrossRefPubMedGoogle Scholar
  13. 13.
    Schulz KF, Grimes DA. Sample size calculations in randomised trials: mandatory and mystical. Lancet. 2005;365:1348–53.CrossRefPubMedGoogle Scholar
  14. 14.
    Curran D, Sylvester RJ, Hoctin Boes G. Sample size estimation in phase III cancer clinical trials. Eur J Surg Oncol. 1999;25:244–50.CrossRefPubMedGoogle Scholar
  15. 15.
    Fayers PM, Machin D. Sample size: how many patients are necessary? Br J Cancer. 1995;72:1–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Florey CD. Sample size for beginners. BMJ. 1993;306:1181–4.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rohrig B, du Prel JB, Wachtlin D, et al. Sample size calculation in clinical trials: part 13 of a series on evaluation of scientific publications. Dtsch Arztebl Int. 2010;107:552–6.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Whitley E, Ball J. Statistics review 4: sample size calculations. Crit Care. 2002;6:335–41.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Simon R. Size of phase III cancer clinical trials. Cancer Treat Rep. 1985;69:1087–93.PubMedGoogle Scholar
  20. 20.
    Schulz KF, Grimes DA. Allocation concealment in randomised trials: defending against deciphering. Lancet. 2002;359:614–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Korn EL, Freidlin B. Adaptive clinical trials: advantages and disadvantages of various adaptive design elements. J Natl Cancer Inst. 2017;109.  https://doi.org/10.1093/jnci/djx013.
  22. 22.
    Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32.CrossRefPubMedGoogle Scholar
  23. 23.
    Green S, Liu PY, O’Sullivan J. Factorial design considerations. J Clin Oncol. 2002;20:3424–30.CrossRefPubMedGoogle Scholar
  24. 24.
    Cunningham D, Starling N, Rao S, et al. Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med. 2008;358:36–46.CrossRefPubMedGoogle Scholar
  25. 25.
    Sargent D. General and statistical hierarchy of appropriate biologic endpoints. Oncology (Williston Park). 2006;20:5–9.Google Scholar
  26. 26.
    European Medicines Agency. ICH Topic E9 - Statistical Principles for Clinical Trials. Note for Guidance on Statistical Principles for Clinical Trials (CPMP/ICH/363/96). Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002928.pdf. Accessed 21 Apr 2017.
  27. 27.
    Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.CrossRefPubMedGoogle Scholar
  28. 28.
    Scher HI, Halabi S, Tannock I, et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol. 2008;26:1148–59.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rustin GJ, Vergote I, Eisenhauer E, et al. Definitions for response and progression in ovarian cancer clinical trials incorporating RECIST 1.1 and CA 125 agreed by the Gynecological Cancer Intergroup (GCIG). Int J Gynecol Cancer. 2011;21:419–23.CrossRefPubMedGoogle Scholar
  30. 30.
    O’Connell MJ, Colangelo LH, Beart RW, et al. Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: surgical end points from National Surgical Adjuvant Breast and Bowel Project trial R-04. J Clin Oncol. 2014;32:1927–34.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wen PY, Macdonald DR, Reardon DA, et al. Updated response assessment criteria for high-grade gliomas: response assessment in Neuro-Oncology Working Group. J Clin Oncol. 2010;28:1963–72.CrossRefPubMedGoogle Scholar
  32. 32.
    Gourgou-Bourgade S, Cameron D, Poortmans P, et al. Guidelines for time-to-event end point definitions in breast cancer trials: results of the DATECAN initiative (Definition for the Assessment of Time-to-event Endpoints in CANcer trials). Ann Oncol. 2015;26:873–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Saad ED, Buyse M. Statistical controversies in clinical research: end points other than overall survival are vital for regulatory approval of anticancer agents. Ann Oncol. 2016;27:373–8.CrossRefPubMedGoogle Scholar
  34. 34.
    U.S. Department of Health and Human Services. National Cancer Institute. Cancer Therapy Evaluation Program. Common Terminology Criteria for Adverse Events (CTCAE). Version 4.0. Available at http://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf. Accessed 21 Apr 2017.
  35. 35.
    Stathopoulos GP, Antoniou D, Dimitroulis J, et al. Liposomal cisplatin combined with paclitaxel versus cisplatin and paclitaxel in non-small-cell lung cancer: a randomized phase III multicenter trial. Ann Oncol. 2010;21:2227–32.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gronberg BH, Bremnes RM, Flotten O, et al. Phase III study by the Norwegian Lung Cancer Study Group: pemetrexed plus carboplatin compared with gemcitabine plus carboplatin as first-line chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol. 2009;27:3217–24.CrossRefPubMedGoogle Scholar
  37. 37.
    Vergnenegre A, Corre R, Berard H, et al. Cost-effectiveness of second-line chemotherapy for non-small cell lung cancer: an economic, randomized, prospective, multicenter phase III trial comparing docetaxel and pemetrexed: the GFPC 05-06 study. J Thorac Oncol. 2011;6:161–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Burris HA III, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.CrossRefPubMedGoogle Scholar
  39. 39.
    Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355:2733–43.CrossRefPubMedGoogle Scholar
  40. 40.
    Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002;346:92–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Sparano JA, Wang M, Martino S, et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med. 2008;358:1663–71.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Sun X, Ioannidis JP, Agoritsas T, et al. How to use a subgroup analysis: users’ guide to the medical literature. JAMA. 2014;311:405–11.CrossRefPubMedGoogle Scholar
  43. 43.
    Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:1626–34.CrossRefPubMedGoogle Scholar
  44. 44.
    Dowsett M, Cuzick J, Wale C, et al. Retrospective analysis of time to recurrence in the ATAC trial according to hormone receptor status: an hypothesis-generating study. J Clin Oncol. 2005;23:7512–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Whitehead J. Interim analyses and stopping rules in cancer clinical trials. Br J Cancer. 1993;68:1179–85.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Beer TM, Armstrong AJ, Rathkopf DE, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371:424–33.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Blay JY, Shen L, Kang YK, et al. Nilotinib versus imatinib as first-line therapy for patients with unresectable or metastatic gastrointestinal stromal tumours (ENESTg1): a randomised phase 3 trial. Lancet Oncol. 2015;16:550–60.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Rugo HS, Barry WT, Moreno-Aspitia A, et al. Randomized phase III trial of paclitaxel once per week compared with nanoparticle albumin-bound Nab-paclitaxel once per week or ixabepilone with bevacizumab as first-line chemotherapy for locally recurrent or metastatic breast cancer: CALGB 40502/NCCTG N063H (Alliance). J Clin Oncol. 2015;33:2361–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Greenland S, Senn SJ, Rothman KJ, et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol. 2016;31:337–50.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pocock SJ, Stone GW. The primary outcome is positive - is that good enough? N Engl J Med. 2016;375:971–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Pocock SJ, Stone GW. The primary outcome fails - what next? N Engl J Med. 2016;375:861–70.CrossRefPubMedGoogle Scholar
  52. 52.
    Twelves C, Wong A, Nowacki MP, et al. Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med. 2005;352:2696–704.CrossRefPubMedGoogle Scholar
  53. 53.
    Schumi J, Wittes JT. Through the looking glass: understanding non-inferiority. Trials. 2011;12:106.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Saad ED, Buyse M. Non-inferiority trials in breast and non-small cell lung cancer: choice of non-inferiority margins and other statistical aspects. Acta Oncol. 2012;51:890–6.CrossRefPubMedGoogle Scholar
  55. 55.
    Riechelmann RP, Alex A, Cruz L, et al. Non-inferiority cancer clinical trials: scope and purposes underlying their design. Ann Oncol. 2013;24:1942–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Scagliotti GV, Parikh P, von Pawel J, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26:3543–51.CrossRefPubMedGoogle Scholar
  57. 57.
    Piaggio G, Elbourne DR, Altman DG, et al. Reporting of noninferiority and equivalence randomized trials: an extension of the CONSORT statement. JAMA. 2006;295:1152–60.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dendrix ResearchSão PauloBrazil
  2. 2.IDDILouvain-la-NeuveBelgium

Personalised recommendations