Skip to main content
Book cover

IR Playbook pp 99–113Cite as

Vascular Access Techniques and Closure Devices

  • Chapter
  • First Online:

Abstract

Although noninvasive imaging technologies have advanced significantly, invasive angiography remains the gold standard for diagnosis of a number of vascular pathologies. Minimally invasive therapy provided through transarterial and transvenous routes continues to increase for a variety of disease processes including cancer therapy, neurovascular pathology, atherosclerotic vascular disease, congenital vascular malformations, thrombosis, and management of active hemorrhage. Arterial access methods continue to progress by using nonstandard access vessels with a goal to improve patient safety, comfort, and facilitate procedural technical success. Venous interventions are varied and include thrombo-occlusive disease management, venoplasty, and venous access. Complex venous access techniques are often necessary for patients requiring a chronic central venous access. Several arterial access closure devices are currently available for use. Each device utilizes a unique mechanism to obtain hemostasis with a goal of diminishing post-procedural bleeding and reducing procedure time. Patient-specific risk factors and method of hemostasis should be considered to reduce bleeding risk.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Seldinger SI. Catheter replacement of the needle in percutaneous arteriography; a new technique. Acta Radiol. 1953;39(5):368–76.

    Article  CAS  PubMed  Google Scholar 

  2. Irani F, Kumar S, Colyer WR Jr. Common femoral artery access techniques: a review. J Cardiovasc Med (Hagerstown). 2009;10(7):517–22.

    Article  Google Scholar 

  3. Rupp SB, Vogelzang RL, Nemcek AA Jr, Yungbluth MM. Relationship of the inguinal ligament to pelvic radiographic landmarks: anatomic correlation and its role in femoral arteriography. J Vasc Interv Radiol. 1993;4(3):409–13.

    Article  CAS  PubMed  Google Scholar 

  4. Dudeck O, Teichgraeber U, Podrabsky P, Lopez Haenninen E, Soerensen R, Ricke JA. Randomized trial assessing the value of ultrasound-guided puncture of the femoral artery for interventional investigations. Int J Cardiovasc Imaging. 2004;20(5):363–8.

    Article  PubMed  Google Scholar 

  5. Kalish J, Eslami M, Gillespie D, Schermerhorn M, Rybin D, Doros G, et al. Routine use of ultrasound guidance in femoral arterial access for peripheral vascular intervention decreases groin hematoma rates. J Vasc Surg. 2015;61(5):1231–8.

    Article  PubMed  Google Scholar 

  6. Sobolev M, Slovut DP, Lee Chang A, Shiloh AL, Eisen LA. Ultrasound-guided catheterization of the femoral artery: a systematic review and meta-analysis of randomized controlled trials. J Invasive Cardiol. 2015;27(7):318–23.

    PubMed  Google Scholar 

  7. Sharma PS, Padala SK, Gunda S, Koneru JN, Ellenbogen KA. Vascular complications during catheter ablation of cardiac arrythmias: a comparison between vascular ultrasound guided access and conventional vascular access. J Cardiovasc Electrophysiol. 2016;27:1160.

    Article  PubMed  Google Scholar 

  8. Hildick-Smith DJ, Ludman PF, Lowe MD, Stephens NG, Harcombe AA, Walsh JT, et al. Comparison of radial versus brachial approaches for diagnostic coronary angiography when the femoral approach is contraindicated. Am J Cardiol. 1998;81(6):770–2.

    Article  CAS  PubMed  Google Scholar 

  9. Eichhofer J, Horlick E, Ivanov J, Seidelin PH, Ross JR, Ing D, et al. Decreased complication rates using the transradial compared to the transfemoral approach in percutaneous coronary intervention in the era of routine stenting and glycoprotein platelet IIb/IIIa inhibitor use: a large single-center experience. Am Heart J. 2008;156(5):864–70.

    Article  CAS  PubMed  Google Scholar 

  10. Handlogten KS, Wilson GA, Clifford L, Nuttall GA, Kor DJ. Brachial artery catheterization: an assessment of use patterns and associated complications. Anesth Analg. 2014;118(2):288–95.

    Article  PubMed  Google Scholar 

  11. Parviz Y, Rowe R, Vijayan S, Iqbal J, Morton AC, Grech ED, et al. Percutaneous brachial artery access for coronary artery procedures: feasible and safe in the current era. Cardiovasc Revasc Med. 2015;16(8):447–9.

    Article  PubMed  Google Scholar 

  12. Campeau L. Percutaneous radial artery approach for coronary angiography. Catheter Cardiovasc Diagn. 1989;16(1):3–7.

    Article  CAS  Google Scholar 

  13. Barbeau GR, Arsenault F, Dugas L, Simard S, Lariviere MM. Evaluation of the ulnopalmar arterial arches with pulse oximetry and plethysmography: comparison with the Allen's test in 1010 patients. Am Heart J. 2004;147(3):489–93.

    Article  PubMed  Google Scholar 

  14. Fischman AM, Swinburne NC, Patel RSA. Technical guide describing the use of Transradial access technique for endovascular interventions. Tech Vasc Interv Radiol. 2015;18(2):58–65.

    Article  PubMed  Google Scholar 

  15. Tang L, Wang F, Li Y, Zhao L, Xi H, Guo Z, et al. Ultrasound guidance for radial artery catheterization: an updated meta-analysis of randomized controlled trials. PLoS One. 2014;9(11):e111527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rathore S, Stables RH, Pauriah M, Hakeem A, Mills JD, Palmer ND, et al. Impact of length and hydrophilic coating of the introducer sheath on radial artery spasm during transradial coronary intervention: a randomized study. JACC Cardiovasc Interv. 2010;3(5):475–83.

    Article  PubMed  Google Scholar 

  17. Mitchell MD, Hong JA, Lee BY, Umscheid CA, Bartsch SM, Don CW. Systematic review and cost-benefit analysis of radial artery access for coronary angiography and intervention. Circ Cardiovasc Qual Outcomes. 2012;5(4):454–62.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Posham R, Biederman DM, Patel RS, Kim E, Tabori NE, Nowakowski FS, et al. Transradial approach for noncoronary interventions: a single-center review of safety and feasibility in the first 1,500 cases. J Vasc Interv Radiol. 2016;27(2):159–66.

    Article  PubMed  Google Scholar 

  19. Yoo BS, Yoon J, Ko JY, Kim JY, Lee SH, Hwang SO, et al. Anatomical consideration of the radial artery for transradial coronary procedures: arterial diameter, branching anomaly and vessel tortuosity. Int J Cardiol. 2005;101(3):421–7.

    Article  PubMed  Google Scholar 

  20. Hibbert B, Simard T, Wilson KR, Hawken S, Wells GA, Ramirez FD, et al. Transradial versus transfemoral artery approach for coronary angiography and percutaneous coronary intervention in the extremely obese. JACC Cardiovasc Interv. 2012;5(8):819–26.

    Article  PubMed  Google Scholar 

  21. Bertrand OF, Belisle P, Joyal D, Costerousse O, Rao SV, Jolly SS, et al. Comparison of transradial and femoral approaches for percutaneous coronary interventions: a systematic review and hierarchical Bayesian meta-analysis. Am Heart J. 2012;163(4):632–48.

    Article  PubMed  Google Scholar 

  22. Hamon M, Gomes S, Clergeau MR, Fradin S, Morello R, Hamon M. Risk of acute brain injury related to cerebral microembolism during cardiac catheterization performed by right upper limb arterial access. Stroke. 2007;38(7):2176–9.

    Article  PubMed  Google Scholar 

  23. Dudrick S, Masland W, Mishkin M. Brachial plexus injury following axillary artery puncture. Further comments on management. Radiology. 1967;88(2):271–3.

    Article  CAS  PubMed  Google Scholar 

  24. Gur S, Oguzkurt L, Gurel K, Tekbas G, Onder H. US-guided retrograde tibial artery puncture for recanalization of complex infrainguinal arterial occlusions. Diagn Interv Radiol. 2013;19(2):134–40.

    PubMed  Google Scholar 

  25. Palena LM, Manzi M. Antegrade pedal approach for recanalizing occlusions in the opposing circulatory pathway of the foot when a retrograde puncture is not possible. J Endovasc Ther. 2014;21(6):775–8.

    Article  PubMed  Google Scholar 

  26. Binkert CA, Alencar H, Singh J, Baum RA. Translumbar type II endoleak repair using angiographic CT. J Vasc Interv Radiol. 2006;17(8):1349–53.

    Article  PubMed  Google Scholar 

  27. Hind D, Calvert N, McWilliams R, Davidson A, Paisley S, Beverley C, et al. Ultrasonic locating devices for central venous cannulation: meta-analysis. BMJ. 2003;327(7411):361.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Knutstad K, Hager B, Hauser M. Radiologic diagnosis and management of complications related to central venous access. Acta Radiol. 2003;44(5):508–16.

    Article  CAS  PubMed  Google Scholar 

  29. Kato F, Sato Y, Yuasa N, Abo D, Sakuhara Y, Oyama N, et al. Reduction of bed rest time after transfemoral noncardiac angiography from 4 hours to 2 hours: a randomized trial and a one-arm study. J Vasc Interv Radiol. 2009;20(5):587–92.

    Article  PubMed  Google Scholar 

  30. Amin FR, Yousufuddin M, Stables R, Shamim W, Al-Nasser F, Coats AJ, et al. Femoral haemostasis after transcatheter therapeutic intervention: a prospective randomised study of the angio-seal device vs. the femostop device. Int J Cardiol. 2000;76(2–3):235–40.

    Article  CAS  PubMed  Google Scholar 

  31. Pancholy S, Coppola J, Patel T, Roke-Thomas M. Prevention of radial artery occlusion-patent hemostasis evaluation trial (PROPHET study): a randomized comparison of traditional versus patency documented hemostasis after transradial catheterization. Catheter Cardiovasc Interv. 2008;72(3):335–40.

    Article  PubMed  Google Scholar 

  32. Rijkée MP, Statius van Eps RG, Wever JJ, van Overhagen H, van Dijk LC, Knippenberg B. Predictors of failure of closure in percutaneous EVAR using the Prostar XL percutaneous vascular surgery device. Eur J Vasc Endovasc Surg. 2015;49(1):45–9.

    Article  PubMed  Google Scholar 

  33. Schulz-Schupke S, Helde S, Gewalt S, Ibrahim T, Linhardt M, Haas K, et al. Comparison of vascular closure devices vs manual compression after femoral artery puncture: the ISAR-CLOSURE randomized clinical trial. JAMA. 2014;312(19):1981–7.

    Article  CAS  PubMed  Google Scholar 

  34. Robertson L, Andras A, Colgan F, Jackson R. Vascular closure devices for femoral arterial puncture site haemostasis. Cochrane Database Syst Rev. 2016;3:CD009541.

    PubMed  Google Scholar 

  35. Resnic FS, Majithia A, Marinac-Dabic D, Robbins S, Ssemaganda H, Hewitt K, et al. Registry-based prospective, active surveillance of medical-device safety. N Engl J Med. 2017;376(6):526–35.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron M. Fischman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bishay, V.L., Ingber, R.B., O’Connor, P.J., Fischman, A.M. (2018). Vascular Access Techniques and Closure Devices. In: Keefe, N., Haskal, Z., Park, A., Angle, J. (eds) IR Playbook. Springer, Cham. https://doi.org/10.1007/978-3-319-71300-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71300-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71299-4

  • Online ISBN: 978-3-319-71300-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics