Advertisement

Physical Activity as a Strategy to Promote Cognitive Health Among Older People

  • Teresa Liu-Ambrose
Chapter

Abstract

Dementia is one of the most pressing health-care issues of the twenty-first century. Physical activity is a modifiable lifestyle factor that has been identified as positively impacting cognitive health of older adults with and without cognitive decline. In this chapter, we will critically review the recent converging behavioural, neuroimaging, and biomarker evidence linking physical activity with cognitive health. We highlight that endorsing exercise as an approach for promoting both physical and cognitive health, as well as well-being, in older adults may potentially have a high impact for mitigating multiple health concerns. It should therefore be considered as a leading practical strategy for healthy cognitive ageing.

References

  1. Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A., et al. (2010). Effects of aerobic exercise on mild cognitive impairment: A controlled trial. Archives of Neurology, 67(1), 71–79.CrossRefGoogle Scholar
  2. Barha, C. K., Davis, J. C., Falck, R. S., Nagamatsu, L. S., & Liu-Ambrose, T. (2017a). Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans. Frontiers in Neuroendocrinology, 46, 71. https://doi.org/10.1016/j.yfrne.2017.04.002.CrossRefGoogle Scholar
  3. Barha, C. K., Galea, L. A., Nagamatsu, L. S., Erickson, K. I., & Liu-Ambrose, T. (2017b). Personalising exercise recommendations for brain health: Considerations and future directions. British Journal of Sports Medicine, 51(8), 636–639. https://doi.org/10.1136/bjsports-2016-096710.CrossRefGoogle Scholar
  4. Barnes, D. E., & Yaffe, K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurology, 10(9), 819–828.CrossRefGoogle Scholar
  5. Barrios, H., Narciso, S., Guerreiro, M., Maroco, J., Logsdon, R., & de Mendonca, A. (2013). Quality of life in patients with mild cognitive impairment. Aging and Mental Health, 17(3), 287–292. https://doi.org/10.1080/13607863.2012.747083.CrossRefGoogle Scholar
  6. Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Science, 17(10), 502–509. https://doi.org/10.1016/j.tics.2013.08.012.CrossRefGoogle Scholar
  7. Best, J. R., Chiu, B. K., Liang Hsu, C., Nagamatsu, L. S., & Liu-Ambrose, T. (2015). Long-term effects of resistance exercise training on cognition and brain volume in older women: Results from a randomized controlled trial. Journal of the International Neuropsychological Society, 21(10), 745–756. https://doi.org/10.1017/S1355617715000673.CrossRefGoogle Scholar
  8. Bolandzadeh, N., Tam, R., Handy, T. C., Nagamatsu, L. S., Hsu, C. L., Davis, J. C., et al. (2015). Resistance training and white matter lesion progression in older women: Exploratory analysis of a 12-month randomized controlled trial. Journal of the American Geriatrics Society, 63(10), 2052–2060. https://doi.org/10.1111/jgs.13644.CrossRefGoogle Scholar
  9. Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimer’s and Dementia, 3, 186–191.CrossRefGoogle Scholar
  10. Buchman, A. S., Boyle, P. A., Yu, L., Shah, R. C., Wilson, R. S., & Bennett, D. A. (2012). Total daily physical activity and the risk of AD and cognitive decline in older adults. Neurology, 78(17), 1323–1329.CrossRefGoogle Scholar
  11. Busse, A., Bischkopf, J., Riedel-Heller, S. G., & Angermeyer, M. C. (2003). Mild cognitive impairment: Prevalence and incidence according to different diagnostic criteria. Results of the Leipzig longitudinal study of the aged (LEILA75+). British Journal of Psychiatry, 182, 449–454.CrossRefGoogle Scholar
  12. Busse, A. L., Filho, W. J., Magaldi, R. M., Coelho, V. A., Melo, A. C., Betoni, R. A., & Santarém, J. M. (2008). Effects of resistance training exercise on cognitive performance in elderly individuals with memory impairment: Results of a controlled trial. Einstein, 6(4), 402–407.Google Scholar
  13. Cassilhas, R. C., Lee, K. S., Fernandes, J., Oliveira, M. G., Tufik, S., Meeusen, R., & de Mello, M. T. (2012). Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience, 202, 309–317.CrossRefGoogle Scholar
  14. Cassilhas, R. C., Tufik, S., & de Mello, M. T. (2016). Physical exercise, neuroplasticity, spatial learning and memory. Cellular and Molecular Life Sciences, 73(5), 975–983. https://doi.org/10.1007/s00018-015-2102-0.CrossRefGoogle Scholar
  15. Cassilhas, R. C., Viana, V. A., Grassmann, V., Santos, R. T., Santos, R. F., Tufik, S., & Mello, M. T. (2007). The impact of resistance exercise on the cognitive function of the elderly. Medicine & Science in Sports & Exercise, 39(8), 1401–1407.CrossRefGoogle Scholar
  16. Colcombe, S. J., & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125–130.CrossRefGoogle Scholar
  17. Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., & Kramer, A. F. (2003). Aerobic fitness reduces brain tissue loss in aging humans. Journal of Gerontology A, Biological Sciences and Medical Sciences, 58(2), 176–180.CrossRefGoogle Scholar
  18. Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. Journal of Gerontology A, Biological Sciences and Medical Sciences, 61(11), 1166–1170.CrossRefGoogle Scholar
  19. Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., et al. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences U S A, 101(9), 3316–3321.CrossRefGoogle Scholar
  20. Cornelissen, V. A., & Fagard, R. H. (2005). Effect of resistance training on resting blood pressure: A meta-analysis of randomized controlled trials. Journal of Hypertension, 23(2), 251–259.CrossRefGoogle Scholar
  21. de Leeuw, F. E., de Groot, J. C., Achten, E., Oudkerk, M., Ramos, L. M., Heijboer, R., et al. (2001). Prevalence of cerebral white matter lesions in elderly people: A population based magnetic resonance imaging study. The Rotterdam scan study. Journal of Neurology, Neurosurgery, & Psychiatry, 70(1), 9–14.CrossRefGoogle Scholar
  22. Dustman, R. E., Ruhling, R. O., Russell, E. M., Shearer, D. E., Bonekat, H. W., Shigeoka, J. W., et al. (1984). Aerobic exercise training and improved neuropsychological function of older individuals. Neurobiology of Aging, 5(1), 35–42.CrossRefGoogle Scholar
  23. Erickson, K. I., Raji, C. A., Lopez, O. L., Becker, J. T., Rosano, C., Newman, A. B., et al. (2011a). Physical activity predicts gray matter volume in late adulthood: The cardiovascular health study. Neurology, 75(16), 1415–1422.CrossRefGoogle Scholar
  24. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., et al. (2011b). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences U S A, 108(7), 3017–3022.CrossRefGoogle Scholar
  25. Etnier, J. L., Nowell, P. M., Landers, D. M., & Sibley, B. A. (2006). A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Research Reviews, 52(1), 119–130.CrossRefGoogle Scholar
  26. Gates, N., Fiatarone Singh, M. A., Sachdev, P. S., & Valenzuela, M. (2013). The effect of exercise training on cognitive function in older adults with mild cognitive impairment: A meta-analysis of randomized controlled trials. The American Journal of Geriatric Psychiatry, 21(11), 1086–1097.CrossRefGoogle Scholar
  27. Gow, A. J., Bastin, M. E., Munoz Maniega, S., Valdes Hernandez, M. C., Morris, Z., Murray, C., et al. (2012). Neuroprotective lifestyles and the aging brain: Activity, atrophy, and white matter integrity. Neurology, 79(17), 1802–1808. https://doi.org/10.1212/WNL.0b013e3182703fd2.CrossRefGoogle Scholar
  28. Hamer, M., & Chida, Y. (2009). Physical activity and risk of neurodegenerative disease: A systematic review of prospective evidence. Psychological Medicine, 39(1), 3–11.CrossRefGoogle Scholar
  29. Heyn, P., Abreu, B. C., & Ottenbacher, K. J. (2004). The effects of exercise training on elderly persons with cognitive impairment and dementia: A meta-analysis. Archives of Physical Medicine and Rehabilitation, 85(10), 1694–1704.CrossRefGoogle Scholar
  30. Hovanec, N., Sawant, A., Overend, T. J., Petrella, R. J., & Vandervoort, A. A. (2012). Resistance training and older adults with type 2 diabetes mellitus: Strength of the evidence. Journal of Aging Research, 2012, 284635. https://doi.org/10.1155/2012/284635.CrossRefGoogle Scholar
  31. Hsu, C. L., Best, J. R., Davis, J. C., Nagamatsu, L. S., Wang, S., Boyd, L. A., et al. (2017). Aerobic exercise promotes executive functions and impacts functional neural activity among older adults with vascular cognitive impairment. British Journal of Sports Medicine. https://doi.org/10.1136/bjsports-2016-096846.
  32. Huijts, M., Duits, A., van Oostenbrugge, R. J., Kroon, A. A., de Leeuw, P. W., & Staals, J. (2013). Accumulation of MRI markers of cerebral small vessel disease is associated with decreased cognitive function. A study in first-ever lacunar stroke and hypertensive patients. Frontiers in Aging Neuroscience, 5, 72. https://doi.org/10.3389/fnagi.2013.00072.CrossRefGoogle Scholar
  33. Janke, A. L., de Zubicaray, G., Rose, S. E., Griffin, M., Chalk, J. B., & Galloway, G. J. (2001). 4D deformation modeling of cortical disease progression in Alzheimer’s dementia. Magnetic Resonance Medicine, 46(4), 661–666.CrossRefGoogle Scholar
  34. Kelly, M. E., Loughrey, D., Lawlor, B. A., Robertson, I. H., Walsh, C., & Brennan, S. (2014). The impact of exercise on the cognitive functioning of healthy older adults: A systematic review and meta-analysis. Ageing Research Reviews, 16, 12–31. https://doi.org/10.1016/j.arr.2014.05.002.CrossRefGoogle Scholar
  35. Kimura, K., Obuchi, S., Arai, T., Nagasawa, H., Shiba, Y., Watanabe, S., & Kojima, M. (2010). The influence of short-term strength training on health-related quality of life and executive cognitive function. Journal of Physiological Anthropology, 29(3), 95–101.CrossRefGoogle Scholar
  36. Kraemer, W. J., Adams, K., Cafarelli, E., Dudley, G. A., Dooly, C., Feigenbaum, M. S., et al. (2002). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine & Science in Sports & Exercise, 34(2), 364–380.CrossRefGoogle Scholar
  37. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., et al. (1999). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418–419.CrossRefGoogle Scholar
  38. Kuo, H. K., & Lipsitz, L. A. (2004). Cerebral white matter changes and geriatric syndromes: Is there a link? Journal of Gerontology A, Biological Sciences and Medical Sciences, 59(8), 818–826.CrossRefGoogle Scholar
  39. Lautenschlager, N. T., Cox, K. L., Flicker, L., Foster, J. K., van Bockxmeer, F. M., Xiao, J., et al. (2008). Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: A randomized trial. Journal of the American Medical Association, 300(9), 1027–1037. https://doi.org/10.1001/jama.300.9.1027.CrossRefGoogle Scholar
  40. Lee, A. T. C., Richards, M., Chan, W. C., Chiu, H. F. K., Lee, R. S. Y., & Lam, L. C. W. (2015). Intensity and types of physical exercise in relation to dementia risk reduction in community-living older adults. Journal of the American Medical Directors Association, 16(10), 899.e891–899.e897. https://doi.org/10.1016/j.jamda.2015.07.012.
  41. Liao, D., Cooper, L., Cai, J., Toole, J. F., Bryan, N. R., Hutchinson, R. G., & Tyroler, H. A. (1996). Presence and severity of cerebral white matter lesions and hypertension, its treatment, and its control. The ARIC study. Atherosclerosis risk in communities study. Stroke, 27(12), 2262–2270.CrossRefGoogle Scholar
  42. Liu-Ambrose, T., Best, J. R., Davis, J. C., Eng, J. J., Lee, P. E., Jacova, C., et al. (2016). Aerobic exercise and vascular cognitive impairment: A randomized controlled trial. Neurology, 87(20), 2082–2090. https://doi.org/10.1212/WNL.0000000000003332.CrossRefGoogle Scholar
  43. Liu-Ambrose, T., & Donaldson, M. G. (2009). Exercise and cognition in older adults: Is there a role for resistance training programmes? British Journal of Sports Medicine, 43(1), 25–27.CrossRefGoogle Scholar
  44. Liu-Ambrose, T., Nagamatsu, L. S., Graf, P., Beattie, B. L., Ashe, M. C., & Handy, T. C. (2010). Resistance training and executive functions: A 12-month randomized controlled trial. Archives of Internal Medicine, 170(2), 170–178.CrossRefGoogle Scholar
  45. Liu-Ambrose, T., Nagamatsu, L. S., Voss, M. W., Khan, K. M., & Handy, T. C. (2012). Resistance training and functional plasticity of the aging brain: A 12-month randomized controlled trial. Neurobiology of Aging, 33(8), 1690–1698.CrossRefGoogle Scholar
  46. Longstreth, W. T., Jr., Manolio, T. A., Arnold, A., Burke, G. L., Bryan, N., Jungreis, C. A., et al. (1996). Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. Stroke, 27(8), 1274–1282.CrossRefGoogle Scholar
  47. Middleton, L. E., Manini, T. M., Simonsick, E. M., Harris, T. B., Barnes, D. E., Tylavsky, F., et al. (2011). Activity energy expenditure and incident cognitive impairment in older adults. Archives of Internal Medicine, 171(14), 1251–1257. https://doi.org/10.1001/archinternmed.2011.277.CrossRefGoogle Scholar
  48. Nagamatsu, L. S., Davis, J. C., & Liu-Ambrose, T. ( 2011). Commentaries on viewpoint: Control arms in exercise training studies: Transitioning from an era of intervention efficacy to one of comparative clinical effectiveness research. A PROPOSED ALTERNATIVE TO AN INACTIVE CONTROL ARM: LOW-IMPACT EXERCISE GROUPS. Journal of Applied Physiology, 111(3), 949–950.Google Scholar
  49. Nagamatsu, L. S., Flicker, L., Kramer, A. F., Voss, M. W., Erickson, K. I., Hsu, C. L., & Liu-Ambrose, T. (2014). Exercise is medicine, for the body and the brain. British Journal of Sports Medicine, 48(12), 943–944. https://doi.org/10.1136/bjsports-2013-093224.CrossRefGoogle Scholar
  50. Nagamatsu, L. S., Handy, T. C., Hsu, C. L., Voss, M., & Liu-Ambrose, T. (2012). Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Archives of Internal Medicine, 172(8), 666–668.CrossRefGoogle Scholar
  51. Ohman, H., Savikko, N., Strandberg, T. E., & Pitkala, K. H. (2014). Effect of physical exercise on cognitive performance in older adults with mild cognitive impairment or dementia: A systematic review. Dementia and Geriatric Cognitive Disorders, 38(5–6), 347–365. https://doi.org/10.1159/000365388.CrossRefGoogle Scholar
  52. Perrig-Chiello, P., Perrig, W. J., Ehrsam, R., Staehelin, H. B., & Krings, F. (1998). The effects of resistance training on well-being and memory in elderly volunteers. Age and Ageing, 27(4), 469–475.CrossRefGoogle Scholar
  53. Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 1985–1992.CrossRefGoogle Scholar
  54. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303–308.CrossRefGoogle Scholar
  55. Raschetti, R., Albanese, E., Vanacore, N., & Maggini, M. (2007). Cholinesterase inhibitors in mild cognitive impairment: A systematic review of randomised trials. PLoS Medicine, 4(11), e338.CrossRefGoogle Scholar
  56. Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., et al. (2005). Regional brain changes in aging healthy adults: General trends, individual differences and modifiers. Cerebral Cortex, 15(11), 1676–1689.CrossRefGoogle Scholar
  57. Rosen, W. G., Mohs, R. C., & Davis, K. L. (1984). A new rating scale for Alzheimer’s disease. American Journal of Psychiatry, 141, 1356–1364.CrossRefGoogle Scholar
  58. Sattler, C., Erickson, K. I., Toro, P., & Schroder, J. (2011). Physical fitness as a protective factor for cognitive impairment in a prospective population-based study in Germany. Journal ofAlzheimers Disease, 26(4), 709–718.CrossRefGoogle Scholar
  59. Sofi, F., Valecchi, D., Bacci, D., Abbate, R., Gensini, G. F., Casini, A., & Macchi, C. (2011). Physical activity and risk of cognitive decline: A meta-analysis of prospective studies. Journal of Internal Medicine, 269(1), 107–117. https://doi.org/10.1111/j.1365-2796.2010.02281.x.CrossRefGoogle Scholar
  60. Strasser, B., Siebert, U., & Schobersberger, W. (2010). Resistance training in the treatment of the metabolic syndrome: A systematic review and meta-analysis of the effect of resistance training on metabolic clustering in patients with abnormal glucose metabolism. Sports Medicine, 40(5), 397–415. https://doi.org/10.2165/11531380-000000000-00000.CrossRefGoogle Scholar
  61. Suo, C., Singh, M. F., Gates, N., Wen, W., Sachdev, P., Brodaty, H., et al. (2016). Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise. Molecular Psychiatry, 21, 1633. https://doi.org/10.1038/mp.2016.19.CrossRefGoogle Scholar
  62. Taaffe, D. R., Galvao, D. A., Sharman, J. E., & Coombes, J. S. (2007). Reduced central blood pressure in older adults following progressive resistance training. Journal of Human Hypertension, 21(1), 96–98. https://doi.org/10.1038/sj.jhh.1002115.CrossRefGoogle Scholar
  63. Tsutsumi, T., Don, B. M., Zaichkowsky, L. D., & Delizonna, L. L. (1997). Physical fitness and psychological benefits of strength training in community dwelling older adults. Applied Human Science, 16(6), 257–266.CrossRefGoogle Scholar
  64. U.S. Department of Health and Human Services. (2000). Healthy people 2010: Understanding and improving health (2nd ed.). Washington, DC: U.S. Government Printing Office. http://www.who.int/mental_health/publications/dementia_report_2012/en/
  65. Wanderley, F. A. C., Moreira, A., Sokhatska, O., Palmares, C., Moreira, P., Sandercock, G., et al. (2013). Differential responses of adiposity, inflammation and autonomic function to aerobic versus resistance training in older adults. Experimental Gerontology, 48(3), 326–333.CrossRefGoogle Scholar
  66. West, R. L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychology Bulletin, 120(2), 272–292.CrossRefGoogle Scholar
  67. Weuve, J., Kang, J. H., Manson, J. E., Breteler, M. M. B., Ware, J. H., & Grodstein, F. (2004). Physical activity, including walking, and cognitive function in older women. Journal of the American Medical Association, 292(12), 1454–1461.CrossRefGoogle Scholar
  68. Williams, M. A., Haskell, W. L., Ades, P. A., Amsterdam, E. A., Bittner, V., Franklin, B. A., et al. (2007). Resistance exercise in individuals with and without cardiovascular disease: 2007 update: A scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation, 116(5), 572–584. https://doi.org/10.1161/circulationaha.107.185214.CrossRefGoogle Scholar
  69. World Health Organization, & Alzheimer’s Disease International. (2012). Dementia: A public health authority. http://www.who.int/mental_health/publications/dementia_report_2012/en/.
  70. Yaffe, K., Barnes, D., Nevitt, M., Lui, L. Y., & Covinsky, K. (2001). A prospective study of physical activity and cognitive decline in elderly women: Women who walk. Archives of Internal Medicine, 161(14), 1703–1708.CrossRefGoogle Scholar
  71. Young, J., Angevaren, M., Rusted, J., & Tabet, N. (2015). Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database Systematic Reviews, 4, CD005381. https://doi.org/10.1002/14651858.CD005381.pub4.CrossRefGoogle Scholar
  72. Zheng, G., Xia, R., Zhou, W., Tao, J., & Chen, L. (2016). Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: A systematic review and meta-analysis of randomised controlled trials. British Journal of Sports Medicine, 50, 1443. https://doi.org/10.1136/bjsports-2015-095699.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Teresa Liu-Ambrose
    • 1
  1. 1.Againg, Mobility, and Cognitive Neuroscience Laboratory, Department of Physical TherapyUniversity of British Columbia, Vancouver Coastal Health Research InstituteVancouverCanada

Personalised recommendations