Advertisement

Neurohormonal Procedures in Obesity Treatment

  • Sara A. Morrison
  • Sajani N. Shah
Chapter

Abstract

Bariatric surgery is one of the most effective methods for achieving sustainable weight loss, though it can be associated with treatment failures, risks, and potential side effects that are not negligible. Neuromodulation techniques offer a novel approach to the treatment and prevention of obesity and related comorbidities through less invasive means while simultaneously offering a lower side effect profile. Vagal blockade, deep brain stimulation, and bariatric vascular embolization are three of the most promising techniques currently emerging in the field of neuromodulation for the treatment of obesity. Here we review the pathophysiology and rationale behind these approaches, as well as the current evidence in the literature and future applications for their use.

Keywords

Obesity Vagal nerve blocking Neuromodulation Deep brain stimulation Lateral hypothalamus Nucleus accumbens Reward pathway Binge eating Embolization Ghrelin Left gastric artery Bariatric 

Abbreviations

BMI

Body mass index

DBS

Deep brain stimulation

DM

Diabetes mellitus

EWL

Excess weight loss

HbA1c

Hemoglobin A1c

HDL

High-density lipoprotein

LDL

Low-density lipoprotein

TWL

Total weight loss

Vbloc

Vagal nerve blockade

References

  1. 1.
    Weiss CR, Gunn AJ, Kim CY, Paxton BE, Kraitchman DL, Arepally A. Bariatric embolization of the gastric arteries for the treatment of obesity. J Vasc Interv Radiol. 2015;26(5):613–24.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Sarr MG, Billington CJ, Brancatisano R, Brancatisano A, Toouli J, Kow L, Nguyen NT, Blackstone R, Maher JW, Shikora S, Reeds DN, Eagon JC, Wolfe BM, O'Rourke RW, Fujioka K, Takata M, Swain JM, Morton JM, Ikramuddin S, Schweitzer M, Chand B, Rosenthal R, EMPOWER Study Group. The EMPOWER study: randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity. Obes Surg. 2012;22(11):1771–82.PubMedCrossRefGoogle Scholar
  3. 3.
    Apovian CM, Shah SN, Wolfe BM, Ikramuddin S, Miller CJ, Tweden KS, Billington CJ, Shikora SA. Two-year outcomes of vagal nerve blocking (vBloc) for theTreatment of obesity in the ReCharge trial. Obes Surg. 2017;27(1):169–76.PubMedCrossRefGoogle Scholar
  4. 4.
    Ahima RS, Antwi DA. Brain regulation of appetite and satiety. Endocrinol Metab Clin North Am. 2008;37(4):811–23.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Shikora SA, Toouli J, Herrera MF, Kulseng B, Brancatisano R, Kow L, Pantoja JP, Johnsen G, Brancatisano A, Tweden KS, Knudson MB, Billington CJ. Erratum to: intermittent vagal nerve block for improvements in obesity, cardiovascular risk factors, and glycemic control in patients with type 2 diabetes mellitus: 2-year results of the VBLOC DM2 study. Obes Surg. 2016;26(5):1029.PubMedCrossRefGoogle Scholar
  6. 6.
    Fujioka K. Benefits of moderate weight loss in patients with type 2 diabetes. Diabetes Obes Metab. 2010;12(3):186–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Ho AL, Sussman ES, Zhang M, Pendharkar AV, Azagury DE, Bohon C, Halpern CH. Deep brain stimulation for obesity. Cureus. 2015;7(3):e259.PubMedCentralPubMedGoogle Scholar
  8. 8.
    Perlmutter JS, Mink JW. Deep brain stimulation. Annu Rev Neurosci. 2006;29:229–57.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Halpern C, Hurtig H, Jaggi J, Grossman M, Won M, Baltuch G. Deep brain stimulation in neurologic disorders. Parkinsonism Relat Disord. 2007;13(1):1–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Tagliati M, Krack P, Volkmann J, Aziz T, Krauss JK, Kupsch A, Vidailhet AM. Long-term management of DBS in dystonia: response to stimulation, adverse events, battery changes, and special considerations. Mov Disord. 2011;26(Suppl1):S54–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Toft M, Lilleeng B, Ramm-Pettersen J, Skogseid IM, Gundersen V, Gerdts R, Pedersen L, Skjelland M, Røste GK, Dietrichs E. Long-term efficacy and mortality in Parkinson’s disease patients treated with subthalamic stimulation. Mov Disord. 2011;26(10):1931–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Flier JS, Maratos-Flier E. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J Clin Invest. 2001;107(3):379–86.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Davis JF, Choi DL, Schurdak JD, Fitzgerald MF, Clegg DJ, Lipton JW, Figlewicz DP, Benoit SC. Leptin regulates energy balance and motivation through action at distinct neural circuits. Biol Psychiatry. 2011;69(7):668–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Münzberg H, Björnholm M, Bates SH, Myers MG Jr. Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci. 2005;62(6):642–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32. Erratum in: Nature. 1995;374(6521):479.PubMedCrossRefGoogle Scholar
  16. 16.
    Wabitsch M, Funcke JB, Lennerz B, Kuhnle-Krahl U, Lahr G, Debatin KM, Vatter P, Gierschik P, Moepps B, Fischer-Posovszky P. Biologically inactive leptin and early-onset extreme obesity. N Engl J Med. 2015;372(1):48–54.PubMedCrossRefGoogle Scholar
  17. 17.
    Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, Alonso-Alonso M, Audette M, Malbert CH, Stice E. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. Neuroimage Clin. 2015;8:1–31.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci. 2006;26(24):6583–8. Erratum in: J Neurosci. 2006;26(27):table of contents.PubMedCrossRefGoogle Scholar
  19. 19.
    Whitfield TW Jr, Shi X, Sun WL, McGinty JF. The suppressive effect of an intra-prefrontal cortical infusion of BDNF on cocaine-seeking is Trk receptor and extracellular signal-regulated protein kinase mitogen-activated protein kinase dependent. J Neurosci. 2011;31(3):834–42.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Blendy JA, Maldonado R. Genetic analysis of drug addiction: the role of cAMP response element binding protein. J Mol Med (Berl). 1998;76(2):104–10.CrossRefGoogle Scholar
  21. 21.
    Teegarden SL, Bale TL. Decreases in dietary preference produce increased emotionality and risk for dietary relapse. Biol Psychiatry. 2007;61(9):1021–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Kober H, Mende-Siedlecki P, Kross EF, Weber J, Mischel W, Hart CL, Ochsner KN. Prefrontal-striatal pathway underlies cognitive regulation of craving. Proc Natl Acad Sci U S A. 2010;107(33):14811–6.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, Alexoff D, Ding YS, Wong C, Ma Y, Pradhan K. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. NeuroImage. 2008;42(4):1537–43.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Stice E, Yokum S, Bohon C, Marti N, Smolen A. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. NeuroImage. 2010;50(4):1618–25.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    O'Doherty JP, Deichmann R, Critchley HD, Dolan RJ. Neural responses during anticipation of a primary taste reward. Neuron. 2002;33(5):815–26.PubMedCrossRefGoogle Scholar
  26. 26.
    Stoeckel LE, Weller RE, Cook EW 3rd, Twieg DB, Knowlton RC, Cox JE. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. NeuroImage. 2008;41(2):636–47.PubMedCrossRefGoogle Scholar
  27. 27.
    Ochner CN, Kwok Y, Conceição E, Pantazatos SP, Puma LM, Carnell S, Teixeira J, Hirsch J, Geliebter A. Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ann Surg. 2011;253(3):502–7.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Dunn JP, Cowan RL, Volkow ND, Feurer ID, Li R, Williams DB, Kessler RM, Abumrad NN. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Brain Res. 2010;1350:123–30.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Steele KE, Prokopowicz GP, Schweitzer MA, Magunsuon TH, Lidor AO, Kuwabawa H, Kumar A, Brasic J, Wong DF. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg. 2010;20(3):369–74.PubMedCrossRefGoogle Scholar
  30. 30.
    Sani S, Jobe K, Smith A, Kordower JH, Bakay RA. Deep brain stimulation for treatment of obesity in rats. J Neurosurg. 2007;107(4):809–13.PubMedCrossRefGoogle Scholar
  31. 31.
    Müller UJ, Sturm V, Voges J, Heinze HJ, Galazky I, Heldmann M, Scheich H, Bogerts B. Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Pharmacopsychiatry. 2009;42(6):288–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Brown FD, Fessler RG, Rachlin JR, Mullan S. Changes in food intake with electrical stimulation of the ventromedial hypothalamus in dogs. J Neurosurg. 1984;60(6):1253–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Ruffin M, Nicolaidis S. Electrical stimulation of the ventromedial hypothalamus enhances both fat utilization and metabolic rate that precede and parallel the inhibition of feeding behavior. Brain Res. 1999;846(1):23–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Mantione M, van de Brink W, Schuurman PR, Denys D. Smoking cessation and weight loss after chronic deep brain stimulation of the nucleus accumbens: therapeutic and research implications: case report. Neurosurgery. 2010;66(1):E218; discussion E218.PubMedCrossRefGoogle Scholar
  35. 35.
    Harrell LE, Decastro JM, Balagura S. A critical evaluation of body weight loss following lateral hypothalamic lesions. Physiol Behav. 1975;15(1):133–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Keesey RE, Powley TL. Self-stimulation and body weight in rats with lateral hypothalamic lesions. Am J Phys. 1973;224(4):970–8.Google Scholar
  37. 37.
    Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL, Pollak P. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003;349(20):1925–34.PubMedCrossRefGoogle Scholar
  38. 38.
    Kelley AE, Stinus L. Disappearance of hoarding behavior after 6-hydroxydopamine lesions of the mesolimbic dopamine neurons and its reinstatement with L-dopa. Behav Neurosci. 1985;99(3):531–45.PubMedCrossRefGoogle Scholar
  39. 39.
    McClelland J, Bozhilova N, Campbell I, Schmidt U. A systematic review of the effects of neuromodulation on eating and body weight: evidence from human and animal studies. Eur Eat Disord Rev. 2013;21(6):436–55.PubMedCrossRefGoogle Scholar
  40. 40.
    Halpern CH, Tekriwal A, Santollo J, Keating JG, Wolf JA, Daniels D, Bale TL. Amelioration of binge eating by nucleus accumbens shell deep brain stimulation in mice involves D2 receptor modulation. J Neurosci. 2013;33(17):7122–9.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    van der Plasse G, Schrama R, van Seters SP, Vanderschuren LJ, Westenberg HG. Deep brain stimulation reveals a dissociation of consummatory and motivated behaviour in the medial and lateral nucleus accumbens shell of the rat. PLoS One. 2012;7(3):e33455.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Delgado JM, Anand BK. Increase of food intake induced by electrical stimulation of the lateral hypothalamus. Am J Phys. 1953;172(1):162–8.Google Scholar
  43. 43.
    Mogenson GJ. Stability and modification of consummatory behaviors elicited by electrical stimulation of the hypothalamus. Physiol Behav. 1971;6(3):255–60.PubMedCrossRefGoogle Scholar
  44. 44.
    Stephan FK, Valenstein ES, Zucker I. Copulation and eating during electrical stimulation of the rat hypothalamus. Physiol Behav. 1971;7(4):587–93.PubMedCrossRefGoogle Scholar
  45. 45.
    Schallert T. Reactivity to food odors during hypothalamic stimulation in rats not experienced with stimulation-induced eating. Physiol Behav. 1977;18(6):1061–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Halperin R, Gatchalian CL, Adachi TJ, Carter J, Leibowitz SF. Relationship of adrenergic and electrical brain stimulation induced feeding responses. Pharmacol Biochem Behav. 1983;18(3):415–22.PubMedCrossRefGoogle Scholar
  47. 47.
    Stenger J, Fournier T, Bielajew C. The effects of chronic ventromedial hypothalamic stimulation on weight gain in rats. Physiol Behav. 1991;50(6):1209–13.PubMedCrossRefGoogle Scholar
  48. 48.
    Bielajew C, Stenger J, Schindler D. Factors that contribute to the reduced weight gain following chronic ventromedial hypothalamic stimulation. Behav Brain Res. 1994;62(2):143–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Lehmkuhle MJ, Mayes SM, Kipke DR. Unilateral neuromodulation of the ventromedial hypothalamus of the rat through deep brain stimulation. J Neural Eng. 2010;7(3):036006.PubMedCrossRefGoogle Scholar
  50. 50.
    Laćan G, De Salles AA, Gorgulho AA, Krahl SE, Frighetto L, Behnke EJ, Melega WP. Modulation of food intake following deep brain stimulation of the ventromedial hypothalamus in the vervet monkey. Laboratory investigation. J Neurosurg. 2008;108(2):336–42.PubMedCrossRefGoogle Scholar
  51. 51.
    Torres N, Chabardès S, Benabid AL. Rationale for hypothalamus-deep brain stimulation in food intake disorders and obesity. Adv Tech Stand Neurosurg. 2011;36:17–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Tomycz ND, Whiting DM, Oh MY. Deep brain stimulation for obesity—from theoretical foundations to designing the first human pilot study. Neurosurg Rev. 2012;35(1):37–42; discussion 42-3.PubMedCrossRefGoogle Scholar
  53. 53.
    Whiting DM, Tomycz ND, Bailes J, de Jonge L, Lecoultre V, Wilent B, Alcindor D, Prostko ER, Cheng BC, Angle C, Cantella D, Whiting BB, Mizes JS, Finnis KW, Ravussin E, Oh MY. Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism. J Neurosurg. 2013;119(1):56–63.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Gorgulho AA, Pereira JL, Krahl S, Lemaire JJ, De Salles A. Neuromodulation for eating disorders: obesity and anorexia. Neurosurg Clin N Am. 2014;25(1):147–57.PubMedCrossRefGoogle Scholar
  55. 55.
    Miller AL, Lee HJ, Lumeng JC. Obesity-associated biomarkers and executive function in children. Pediatr Res. 2015;77(1–2):143–7.PubMedGoogle Scholar
  56. 56.
    Jirsa VK, Sporns O, Breakspear M, Deco G, McIntosh AR. Towards the virtual brain: network modeling of the intact and the damaged brain. Arch Ital Biol. 2010;148(3):189–205.PubMedGoogle Scholar
  57. 57.
    Butler MG. Prader-Willi syndrome: current understanding of cause and diagnosis. Am J Med Genet. 1990;35(3):319–32.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Stevenson DA, Heinemann J, Angulo M, Butler MG, Loker J, Rupe N, Kendell P, Cassidy SB, Scheimann A. Gastric rupture and necrosis in Prader-Willi syndrome. J Pediatr Gastroenterol Nutr. 2007;45(2):272–4.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Voon V, Krack P, Lang AE, Lozano AM, Dujardin K, Schüpbach M, D'Ambrosia J, Thobois S, Tamma F, Herzog J, Speelman JD, Samanta J, Kubu C, Rossignol H, Poon YY, Saint-Cyr JA, Ardouin C, Moro E. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson’s disease. Brain. 2008;131(Pt10):2720–8.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Houeto JL, Mesnage V, Mallet L, Pillon B, Gargiulo M, du Moncel ST, Bonnet AM, Pidoux B, Dormont D, Cornu P, Agid Y. Behavioural disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry. 2002;72(6):701–7.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Wren AM, Bloom SR. Gut hormones and appetite control. Gastroenterology. 2007;132(6):2116–30.PubMedCrossRefGoogle Scholar
  62. 62.
    Arepally A, Barnett BP, Montgomery E, Patel TH. Catheter-directed gastric artery chemical embolization for modulation of systemic ghrelin levels in a porcine model: initial experience. Radiology. 2007;244(1):138–43.PubMedCrossRefGoogle Scholar
  63. 63.
    Arepally A, Barnett BP, Patel TH, Howland V, Boston RC, Kraitchman DL, Malayeri AA. Catheter-directed gastric artery chemical embolization suppresses systemic ghrelin levels in porcine model. Radiology. 2008;249(1):127–33. Erratum in: Radiology. 2008;249(3):1083. Patel,Tarek T [corrected to Patel, Tarak H].PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Bawudun D, Xing Y, Liu WY, Huang YJ, Ren WX, Ma M, XD X, Teng GJ. Ghrelin suppression and fat loss after left gastric artery embolization in canine model. Cardiovasc Intervent Radiol. 2012;35(6):1460–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Paxton BE, Kim CY, Alley CL, Crow JH, Balmadrid B, Keith CG, Kankotia RJ, Stinnett S, Arepally A. Bariatric embolization for suppression of the hunger hormone ghrelin in a porcine model. Radiology. 2013;266(2):471–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Gunn AJ, Oklu R. A preliminary observation of weight loss following left gastric artery embolization in humans. J Obes. 2014;2014:185349.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of SurgeryTufts Medical CenterBostonUSA

Personalised recommendations