Biodegradable Poly(Butylene Succinate)-Based Composites for Food Packaging

  • Salvatore Mallardo
  • Valentina De Vito
  • Mario Malinconico
  • Maria Grazia Volpe
  • Gabriella SantagataEmail author
  • Maria Laura Di LorenzoEmail author
Conference paper
Part of the Springer Water book series (SPWA)


Active packaging refers to packaging systems with active functions beyond the inert passive containment and protection of the product. It is commonly used with foods, as it helps extend shelf life, improve safety or sensory properties and maintain food quality (Vermeiren et al. in Trends Food Sci Technol 10:77–86, 2009). Most diffused active packaging systems include the use of oxygen scavengers, carbon dioxide or ethylene emitters and scavengers, ethanol releaser, as well as antimicrobial and antioxidant agents. The active agent may be placed in the package with the food, within a small sachet or pad of permeable material, able to release volatile antimicrobial agents without allowing a direct contact with the food product.


  1. 1.
    Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., Debevere, J.: Developments in the active packaging of foods. Trends Food Sci. Technol. 10, 77–86 (2009)CrossRefGoogle Scholar
  2. 2.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)CrossRefGoogle Scholar
  3. 3.
    López-de-Dicastillo, C., Gallur Ramón Catalá, M., Gavara, R., Hernandez-Muñoz, P.: Immobilization of β-cyclodextrin in ethylene-vinyl alcohol copolymer for active food packaging applications. J. Memb. Sci. 353, 184–191 (2010)CrossRefGoogle Scholar
  4. 4.
    Aggarwal, K.K., Khanuja, S.P.S., Ahmad, A., Santha Kumar, T.R., Gupta, V.K., Kumar, S.: Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa. Flavour Fragr. J. 17, 59–63 (2002)CrossRefGoogle Scholar
  5. 5.
    Rančić, A., Soković, M., Van Griensven, L., Vukojević, J., Brkić, D., Ristić, M.: Antimicrobial activity of limonene. Matieres Med. 23, 83–88 (2003)Google Scholar
  6. 6.
    Zhang, Z., Vriesekoop, F., Yuan, Q., Liang, H.: Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion. Food Chem. 150, 303–312 (2014)Google Scholar
  7. 7.
    Sun, J.: d-limonene: safety and clinical applications. Altern. Med. Rev. 12, 259–264 (2007)Google Scholar
  8. 8.
    Chikhoune, A., Hazzit, M., Kerbouche, L., Baaliouamer, A., Aissat, K.: Tetraclinis articulata (Vahl) masters essential oils: chemical composition and biological activities. J. Essent. Oil Res. 25, 300–307 (2013)CrossRefGoogle Scholar
  9. 9.
    Settanni, L., Palazzolo, E., Guarrasi, V., Aleo, A., Mammina, C., Moschetti, G., et al.: Inhibition of foodborne pathogen bacteria by essential oils extracted from citrus fruits cultivated in Sicily. Food Control 26, 326–330 (2012)CrossRefGoogle Scholar
  10. 10.
    Li, P.H., Chiang, B.H.: Process optimization and stability of d-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrason. Sonochem. 19, 192–197 (2012)CrossRefGoogle Scholar
  11. 11.
    Xu, J., Guo, B.-H.: Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnol. J. 5, 1149–1163 (2010)CrossRefGoogle Scholar
  12. 12.
    Mallardo, S., De Vito, V., Malinconico, M., Volpe, M.G., Santagata, G., Di Lorenzo, M.L.: Poly(butylene succinate)-based composites containing β-cyclodextrin/d-limonene inclusion complex. Europ. Polym. J. 79, 82–96 (2016)CrossRefGoogle Scholar
  13. 13.
    Stuart, B.H.: Infrared Spectroscopy: Fundamentals and Applications. Wiley, Hoboken (2004)CrossRefGoogle Scholar
  14. 14.
    Fan, D., Chang, P.R., Lin, N., Yu, J., Huang, J.: Structure and properties of alkaline lignin-filled poly(butylene succinate) plastics. Iran. Polym. J. 20, 3–14 (2011)Google Scholar
  15. 15.
    Chrissafis, K., Paraskevopoulos, K.M., Bikiaris, D.N.: Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): comparative study. Thermochim. Acta 435, 142–150 (2005)CrossRefGoogle Scholar
  16. 16.
    Gan, Z., Abe, H., Kurokawa, H., Doi, Y.: Solid-state microstructures, thermal properties, and crystallization of biodegradable poly(butylene succinate) (PBS) and its copolyesters. Biomacromolecules 2, 605–613 (2001)CrossRefGoogle Scholar
  17. 17.
    Signori, F., Pelagaggi, M., Bronco, S., Righetti, M.C.: Amorphous/crystal and polymer/filler interphases in biocomposites from poly(butylene succinate). Thermochim. Acta 543, 74–81 (2012)CrossRefGoogle Scholar
  18. 18.
    Arrieta, M.P., López, J., Hernández, A., Rayón, E.: Ternary PLA–PHB–limonene blends intended for biodegradable food packaging applications. Euro. Polym. J. 50, 255–270 (2014)CrossRefGoogle Scholar
  19. 19.
    Messersmith, P.B., Giannelis, E.P.: Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem. Mater. 6, 1719–1725 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Salvatore Mallardo
    • 1
  • Valentina De Vito
    • 2
  • Mario Malinconico
    • 1
  • Maria Grazia Volpe
    • 2
  • Gabriella Santagata
    • 1
    Email author
  • Maria Laura Di Lorenzo
    • 1
    Email author
  1. 1.Institute for Polymers Composites and Biomaterials, National Research CouncilPozzuoliItaly
  2. 2.Institute of Food Sciences, National Research CouncilAvellinoItaly

Personalised recommendations