Advertisement

Analyzing Granger Causality in Climate Data with Time Series Classification Methods

  • Christina Papagiannopoulou
  • Stijn Decubber
  • Diego G. Miralles
  • Matthias Demuzere
  • Niko E. C. Verhoest
  • Willem Waegeman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10536)

Abstract

Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested.

Keywords

Climate science Attribution studies Causal inference Granger causality Time series classification 

Notes

Acknowledgements

This work is funded by the Belgian Science Policy Office (BELSPO) in the framework of the STEREO III programme, project SAT-EX (SR/00/306). D. G. Miralles acknowledges support from the European Research Council (ERC) under grant agreement n\(^{\circ }\) 715254 (DRY-2-DRY). The data used in this manuscript can be accessed using http://www.SAT-EX.ugent.be as gateway.

References

  1. 1.
    Attanasio, A.: Testing for linear granger causality from natural/anthropogenic forcings to global temperature anomalies. Theor. Appl. Climatol. 110(1–2), 281–289 (2012)CrossRefGoogle Scholar
  2. 2.
    Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off : a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2017).  https://doi.org/10.1007/s10618-016-0483-9. ISSN: 1573-756XMathSciNetCrossRefGoogle Scholar
  3. 3.
    Batista, G.E.A.P.A., Keogh, E.J., Tataw, O.M., De Souza, V.M.A.: CID: an efficient complexity-invariant distance for time series. Data Min. Knowl. Discov. 28(3), 634–669 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baydogan, M.G., Runger, G.: Time series representation and similarity based on local autopatterns. Data Min. Knowl. Discov. 30(2), 476–509 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baydogan, M.G., Runger, G., Tuv, E.: A bag-of-features framework to classify time series. IEEE Trans. Patt. Anal. Mach. Intell. 35(11), 2796–2802 (2013)CrossRefGoogle Scholar
  6. 6.
    Beck, H.E., McVicar, T.R., van Dijk, A.I.J.M., Schellekens, J., de Jeu, R.A.M., Bruijnzeel, L.A.: Global evaluation of four AVHRR-NDVI data sets: intercomparison and assessment against landsat imagery. Remote Sens. Environ. 115(10), 2547–2563 (2011)CrossRefGoogle Scholar
  7. 7.
    Beck, H.E., van Dijk, A.I.J.M., Levizzani, V., Schellekens, J., Miralles, D.G., Martens, B., de Roo, A.: MSWEP: 3-hourly 0.25\(^{\circ }\) global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. Discuss. 2016, 1–38 (2016)Google Scholar
  8. 8.
    Chapman, D., Cane, M.A., Henderson, N., Lee, D.E., Chen, C.: A vector autoregressive ENSO prediction model. J. Clim. 28(21), 8511–8520 (2015)CrossRefGoogle Scholar
  9. 9.
    Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., et al.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Royal Meteorol. Soc. 137(656), 553–597 (2011)CrossRefGoogle Scholar
  10. 10.
    Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for classification and feature extraction. Inf. Sci. 239, 142–153 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endowment 1(2), 1542–1552 (2008)CrossRefGoogle Scholar
  12. 12.
    Donat, M.G., Alexander, L.V., Yang, H., Durre, I., Vose, R., Dunn, R.J.H., Willett, K.M., Aguilar, E., Brunet, M., Caesar, J., et al.: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res.: Atmos. 118(5), 2098–2118 (2013)Google Scholar
  13. 13.
    Geiger, P., Zhang, K., Gong, M., Janzing, D., Schölkopf, B.: Causal inference by identification of vector autoregressive processes with hidden components. In Proceedings of 32th International Conference on Machine Learning (ICML 2015) (2015)Google Scholar
  14. 14.
    Górecki, T., Łuczak, M.: Using derivatives in time series classification. Data Min. Knowl. Disc. 26(2), 310–331 (2013).  https://doi.org/10.1007/s10618-012-0251-4. ISSN: 1573-756XMathSciNetCrossRefGoogle Scholar
  15. 15.
    Górecki, T., Łuczak, M.: Non-isometric transforms in time series classification using DTW. Knowl.-Based Syst. 61, 98–108 (2014)CrossRefzbMATHGoogle Scholar
  16. 16.
    Grabocka, J., Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Learning time-series shapelets. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 392–401. ACM (2014)Google Scholar
  17. 17.
    Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica: J. Econ. Soc. 37, 424–438 (1969)CrossRefzbMATHGoogle Scholar
  18. 18.
    Hills, J., Lines, J., Baranauskas, E., Mapp, J., Bagnall, A.: Classification of time series by shapelet transformation. Data Min. Knowl. Discov. 28(4), 851–881 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kaufmann, R.K., Zhou, L., Myneni, R.B., Tucker, C.J., Slayback, D., Shabanov, N.V., Pinzon, J.: The effect of vegetation on surface temperature: a statistical analysis of NDVI and climate data. Geophys. Res. Lett. 30(22) (2003)Google Scholar
  20. 20.
    Kodra, E., Chatterjee, S., Ganguly, A.R.: Exploring granger causality between global average observed time series of carbon dioxide and temperature. Theor. Appl. Climatol. 104(3–4), 325–335 (2011)CrossRefGoogle Scholar
  21. 21.
    Liao, T.W.: Clustering of time series data a survey. Patt. Recogn. 38(11), 1857–1874 (2005)CrossRefzbMATHGoogle Scholar
  22. 22.
    Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in time series using bag-of-patterns representation. J. Intell. Inf. Syst. 39(2), 287–315 (2012)CrossRefGoogle Scholar
  23. 23.
    Liu, G., Liu, H., Yin, Y.: Global patterns of NDVI-indicated vegetation extremes and their sensitivity to climate extremes. Environ. Res. Lett. 8(2), 025009 (2013)CrossRefGoogle Scholar
  24. 24.
    Loveland, T.R., Belward, A.S.: The IGBP-DIS global 1km land cover data set, discover: first results. Int. J. Remote Sens. 18(15), 3289–3295 (1997)CrossRefGoogle Scholar
  25. 25.
    Mokhov, I.I., Smirnov, D.A., Nakonechny, P.I., Kozlenko, S.S., Seleznev, E.P., Kurths, J.: Alternating mutual influence of El-Niño/southern oscillation and Indian monsoon. Geophys. Res. Lett. 38(8) (2011)Google Scholar
  26. 26.
    Mosedale, T.J., Stephenson, D.B., Collins, M., Mills, T.C.: Granger causality of coupled climate processes: ocean feedback on the North Atlantic Oscillation. J. Clim. 19(7), 1182–1194 (2006)CrossRefGoogle Scholar
  27. 27.
    Papagiannopoulou, C., Miralles, D.G., Verhoest, N.E.C., Dorigo, W.A., Waegeman, W.: A non-linear Granger causality framework to investigate climate-vegetation dynamics. Geosci. Model Dev. 10, 1–24 (2017)CrossRefGoogle Scholar
  28. 28.
    Rakthanmanon, T., Keogh, E.: Fast shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 668–676. SIAM (2013)Google Scholar
  29. 29.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Sig. Process. 26(1), 43–49 (1978)CrossRefzbMATHGoogle Scholar
  30. 30.
    Schäfer, P.: The BOSS is concerned with time series classification in the presence of noise. Data Min. Knowl. Discov. 29(6), 1505–1530 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Senin, P., Malinchik, S.: SAX-VSM: interpretable time series classification using sax and vector space model. In: 2013 IEEE 13th International Conference on Data Mining (ICDM), pp. 1175–1180. IEEE (2013)Google Scholar
  32. 32.
    Shahin, M.A., Ali, M.A., Ali, A.B.M.S.: Vector Autoregression (VAR) modeling and forecasting of temperature, humidity, and cloud coverage. In: Islam, T., Srivastava, P.K., Gupta, M., Zhu, X., Mukherjee, S. (eds.) Computational Intelligence Techniques in Earth and Environmental Sciences, pp. 29–51. Springer, Dordrecht (2014).  https://doi.org/10.1007/978-94-017-8642-3_2 CrossRefGoogle Scholar
  33. 33.
    Stefan, A., Athitsos, V., Das, G.: The move-split-merge metric for time series. IEEE Trans. Knowl. Data Eng. 25(6), 1425–1438 (2013)CrossRefGoogle Scholar
  34. 34.
    Tucker, C.J., Pinzon, J.E., Brown, M.E., Slayback, D.A., Pak, E.W., Mahoney, R., Vermote, E.F., El Saleous, N.: An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26(20), 4485–4498 (2005)CrossRefGoogle Scholar
  35. 35.
    Zscheischler, J., Mahecha, M.D., Harmeling, S., Reichstein, M.: Detection and attribution of large spatiotemporal extreme events in Earth observation data. Ecol. Inform. 15, 66–73 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christina Papagiannopoulou
    • 1
  • Stijn Decubber
    • 1
  • Diego G. Miralles
    • 2
    • 3
  • Matthias Demuzere
    • 2
  • Niko E. C. Verhoest
    • 2
  • Willem Waegeman
    • 1
  1. 1.Department of Mathematical Modelling, Statistics and BioinformaticsGhent UniversityGhentBelgium
  2. 2.Laboratory of Hydrology and Water ManagementGhent UniversityGhentBelgium
  3. 3.Department of Earth SciencesVU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations