Skip to main content

The Truth About Nemo’s Dad: Sex-Changing Behaviors in Fishes

  • Chapter
  • First Online:
Book cover Choosing Sexes

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Thus far, I have provided evidence in mammals, birds, and reptiles that mammals may adaptively skew sex ratios of offspring and that mechanisms exist by which this may occur. In fishes, there is virtually no evidence showing parental manipulation of sex ratios, perhaps because many fish species exhibit a higher level of plasticity within their sex-determining systems. We now know that fish exhibit the most diverse range of sex-determining systems, ranging from strict gonochorists to hermaphrodites, some with clear genetic mechanisms of sex determination and others with little or no clear genetic influence. In some cases, individuals maintain ovarian and testicular tissue simultaneously through adulthood, choosing whether to produce sperm or eggs in a given attempt. In this chapter, I introduce the many systems of sex determination found in fish species, highlight the environmental and social influences shown to influence piscine sex ratios, and discuss potential adaptive mechanisms of sex allocation in these systems.

Finding Nemo lied to your kids!

How Finding Nemo should have started if it were biologically accurate:

Father and mother clownfish are tending to their clutch of eggs at their sea anemone when the mother is eaten by a barracuda. Nemo hatches as an undifferentiated hermaphrodite (as all clownfish are born) while his father transforms into a female now that his female mate is dead. Since Nemo is the only other clownfish around, he becomes a male and mates with his father (who is now a female). Should his father die, Nemo would change into a female and mate with another male. Although a much different storyline, it still sounds like a crazy adventure!

Patrick Cooney, in Fun Fish Fodder

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abucay JS, Mair GC, Skibinski DO, Beardmore JA (1999) Environmental sex determination: the effect of temperature and salinity on sex ratio in Oreochromis niloticus L. Aquaculture 173(1):219–234

    Article  Google Scholar 

  • Alavi S, Cosson J (2005) Sperm motility in fishes. I. Effects of temperature and pH: a review. Cell Biol Int 29(2):101–110

    Article  PubMed  Google Scholar 

  • Anthes N, Putz A, Michiels NK (2006) Sex role preferences, gender conflict and sperm trading in simultaneous hermaphrodites: a new framework. Anim Behav 72(1):1–12

    Article  Google Scholar 

  • Avise J, Mank J (2009) Evolutionary perspectives on hermaphroditism in fishes. Sex Dev 3(2–3):152–163

    Article  CAS  PubMed  Google Scholar 

  • Axelrod R, Dion D (1988) The further evolution of cooperation. Science 242(4884):1385–1390

    Article  CAS  PubMed  Google Scholar 

  • Chan S, Yeung W (1983) Sex control and sex reversal in fish under natural conditions. Fish Physiol 9:171–222

    Article  Google Scholar 

  • Charnov EL (1980) Sex allocation and local mate competition in barnacles. Marine Biol Lett 2:53–57

    Google Scholar 

  • Charnov EL (1996) Sperm competition and sex allocation in simultaneous hermaphrodites. Evol Ecol 10(5):457–462

    Article  Google Scholar 

  • Charnov EL, Bull J (1977) When is sex environmentally determined? Nature 266:828–830

    Article  CAS  PubMed  Google Scholar 

  • Cole KS (1997) Gonadal development and sexual allocation in mangrove killifish, Rivulus marmoratus (Pisces: Atherinomorpha). Copeia 1997(3):596–600

    Article  Google Scholar 

  • Connor RC (1992) Egg-trading in simultaneous hermaphrodites: an alternative to Tit-for-Tat. J Evol Biol 5(3):523–528

    Article  Google Scholar 

  • Conover DO (2004) Temperature-dependent sex determination in fishes. In: Valenzuela N, Lance V (eds) Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, pp 11–20

    Google Scholar 

  • Conover DO, Heins SW (1987) The environmental and genetic components of sex ratio in Menidia menidia (Pisces: Atherinidae). Copeia 1987(3):732–743

    Article  Google Scholar 

  • Conover DO, Kynard BE (1981) Environmental sex determination: interaction of temperature and genotype in a fish. Science 213:31

    Article  Google Scholar 

  • Conover DO, Ross MR (1982) Patterns in seasonal abundance, growth and biomass of the Atlantic silverside, Menidia menidia, in a New England estuary. Estuar Coasts 5(4):275–286

    Article  Google Scholar 

  • Conover DO, Van Voorhees DA (1990) Evolution of a balanced sex ratio by frequency-dependent selection in a fish. Science 250(4987):1556

    Article  CAS  PubMed  Google Scholar 

  • Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208(3):191–364

    Article  CAS  Google Scholar 

  • Fischer EA (1980) The relationship between mating system and simultaneous hermaphroditism in the coral reef fish, Hypoplectrus nigricans (Serranidae). Anim Behav 28(2):620–633

    Article  Google Scholar 

  • Fischer EA (1984) Egg trading in the chalk bass, Serranus tortugarum, a simultaneous hermaphrodite. Ethology 66(2):143–151

    Google Scholar 

  • Fischer EA (1988) Simultaneous hermaphroditism, tit-for-tat, and the evolutionary stability of social systems. Ethol Sociobiol 9(2-4):119–136

    Article  Google Scholar 

  • Fishelson L (1970) Protogynous sex reversal in the fish Anthias squamipinnis (Teleostei, Anthiidae) regulated by the presence or absence of a male fish. Nature 227(5253):90–91

    Article  CAS  PubMed  Google Scholar 

  • Fromm PO (1980) A review of some physiological and toxicological responses of freshwater fish to acid stress. Environ Biol Fish 5(1):79–93

    Article  CAS  Google Scholar 

  • Ghiselin MT (1969) The evolution of hermaphroditism among animals. Q Rev Biol 44(2):189–208

    Article  CAS  PubMed  Google Scholar 

  • Godwin J, Luckenbach JA, Borski RJ (2003) Ecology meets endocrinology: environmental sex determination in fishes. Evol Dev 5(1):40–49

    Article  PubMed  Google Scholar 

  • Guerrero-Estévez S, Moreno-Mendoza N (2010) Sexual determination and differentiation in teleost fish. Rev Fish Biol Fish 20(1):101–121

    Article  Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science 156(3774):477–488

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD, Axelrod R (1981) The evolution of cooperation. Science 211(27):1390–1396

    PubMed  Google Scholar 

  • Harrington RW (1961) Oviparous hermaphroditic fish with internal self-fertilization. Science 134(3492):1749–1750

    Article  PubMed  Google Scholar 

  • Hattori A (1991) Socially controlled growth and size-dependent sex change in the anemonefish Amphiprion frenatus in Okinawa, Japan. Jpn J Ichthyol 38(2):165–177

    Google Scholar 

  • Ijiri S, Kaneko H, Kobayashi T, Wang D-S, Sakai F, Paul-Prasanth B, Nakamura M, Nagahama Y (2008) Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biol Reprod 78(2):333–341

    Article  CAS  PubMed  Google Scholar 

  • Jonsson B, Jonsson N (2014) Early environment influences later performance in fishes. J Fish Biol 85(2):151–188

    Article  CAS  PubMed  Google Scholar 

  • Kadota T, Osato J, Nagata K, Sakai Y (2012) Reversed sex change in the haremic protogynous hawkfish Cirrhitichthys falco in natural conditions. Ethology 118(3):226–234

    Article  Google Scholar 

  • Kuwamura T, Yogo Y, Nakashima Y (1993) Size-assortative monogamy and paternal egg care in a coral goby Paragobiodon echinocephalus. Ethology 95(1):65–75

    Article  Google Scholar 

  • Kuwamura T, Kadota T, Suzuki S (2014) Testing the low-density hypothesis for reversed sex change in polygynous fish: experiments in Labroides dimidiatus. Sci Rep 4:srep04369

    Google Scholar 

  • Lee R, Gerking S (1980) Survival and reproductive performance of the desert pupfish, Cyprinodon n. nevadensis (Eigenmann and Eigenmann), in acid waters. J Fish Biol 17(5):507–515

    Article  Google Scholar 

  • Leonard JL (1993) Sexual conflict in simultaneous hermaphrodites: evidence from serranid fishes. Environ Biol Fish 36(2):135–148

    Article  Google Scholar 

  • Liew WC, Bartfai R, Lim Z, Sreenivasan R, Siegfried KR, Orban L (2012) Polygenic sex determination system in zebrafish. PLoS One 7(4):e34397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linde M, Palmer M, Alós J (2011) Why protogynous hermaphrodite males are relatively larger than females? Testing growth hypotheses in Mediterranean rainbow wrasse Coris julis (Linnaeus, 1758). Environ Biol Fish 92(3):337–349

    Article  Google Scholar 

  • Luckenbach JA, Godwin J, Daniels HV, Borski RJ (2003) Gonadal differentiation and effects of temperature on sex determination in southern flounder (Paralichthys lethostigma). Aquaculture 216(1):315–327

    Article  Google Scholar 

  • Lutnesky MM (1994) Density-dependent protogynous sex change in territorial-haremic fishes: models and evidence. Behav Ecol 5(4):375–383

    Article  Google Scholar 

  • Magerhans A, Hörstgen-Schwark G (2010) Selection experiments to alter the sex ratio in rainbow trout (Oncorhynchus mykiss) by means of temperature treatment. Aquaculture 306(1):63–67

    Article  Google Scholar 

  • Magerhans A, Müller-Belecke A, Hörstgen-Schwark G (2009) Effect of rearing temperatures post hatching on sex ratios of rainbow trout (Oncorhynchus mykiss) populations. Aquaculture 294(1):25–29

    Article  Google Scholar 

  • Manabe H, Matsuoka M, Goto K, Dewa S-I, Shinomiya A, Sakurai M, Sunobe T (2008) Bi-directional sex change in the gobiid fish Trimma sp.: does size-advantage exist? Behaviour 145(1):99–113

    Article  Google Scholar 

  • Matsuda M, Nagahama Y, Shinomiya A, Sato T (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417(6888):559

    Article  CAS  PubMed  Google Scholar 

  • Moore EC, Roberts RB (2013) Polygenic sex determination. Curr Biol 23(12):R510–R512

    Article  CAS  PubMed  Google Scholar 

  • Moyer JT, Zaiser MJ (1984) Early sex change: a possible mating strategy of Centropyge angelfishes (Pisces: Pomacanthidae). J Ethol 2(1):63–67

    Article  Google Scholar 

  • Munday PL (2002) Bi-directional sex change: testing the growth-rate advantage model. Behav Ecol Sociobiol 52(3):247–254

    Article  Google Scholar 

  • Munday PL, Caley MJ, Jones GP (1998) Bi-directional sex change in a coral-dwelling goby. Behav Ecol Sociobiol 43(6):371–377

    Article  Google Scholar 

  • Munday PL, Buston PM, Warner RR (2006) Diversity and flexibility of sex-change strategies in animals. Trends Ecol Evol 21(2):89–95

    Article  PubMed  Google Scholar 

  • Munday PL, Kuwamura T, Kroon FJ (2010) Bidirectional sex change in marine fishes. In: Cole KS (ed) Reproduction and sexuality in marine fishes: patterns and processes. University of California Press, Berkeley, pp 241–271

    Google Scholar 

  • Munoz RC, Warner RR (2003) A new version of the size-advantage hypothesis for sex change: incorporating sperm competition and size-fecundity skew. Am Nat 161(5):749–761

    Article  PubMed  Google Scholar 

  • Nakashima Y, Kuwamura T, Yogo Y (1995) Why be a both-ways sex changer? Ethology 101(4):301–307

    Article  Google Scholar 

  • Ospina-Alvarez N, Piferrer F (2008) Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS One 3(7):e2837

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandian T (2012) Genetic sex differentiation in fish, vol 1. CRC Press, Boca Raton

    Book  Google Scholar 

  • Paul A, Kuester J (1987) Dominance, kinship and reproductive value in female Barbary macaques (Macaca sylvanus) at Affenberg Salem. Behav Ecol Sociobiol 21(5):323–331

    Article  Google Scholar 

  • Petersen CW (1991) Sex allocation in hermaphroditic sea basses. Am Nat 138(3):650–667

    Article  Google Scholar 

  • Piferrer F (2001) Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197(1):229–281

    Article  CAS  Google Scholar 

  • Robertson D (1972) Social control of sex reversal in a coral-reef fish. Science 177(4053):1007–1009

    Article  CAS  PubMed  Google Scholar 

  • Rodgers E, Earley R, Grober M (2007) Social status determines sexual phenotype in the bi-directional sex changing bluebanded goby Lythrypnus dalli. J Fish Biol 70(6):1660–1668

    Article  Google Scholar 

  • Römer U, Beisenherz W (1996) Environmental determination of sex in Apistogrammai (Cichlidae) and two other freshwater fishes (Teleostei). J Fish Biol 48(4):714–725

    Google Scholar 

  • Rubin DA (1985) Effect of pH on sex ratio in cichlids and a poecilliid (Teleostei). Copeia 1985(1):233–235

    Article  Google Scholar 

  • Saillant E, Fostier A, Haffray P, Menu B, Laureau S, Thimonier J, Chatain B (2003) Effects of rearing density, size grading and parental factors on sex ratios of the sea bass (Dicentrarchus labrax L.) in intensive aquaculture. Aquaculture 221(1):183–206

    Article  Google Scholar 

  • Schärer L, Janicke T, Ramm SA (2015) Sexual conflict in hermaphrodites. Cold Spring Harb Perspect Biol 7(1):a017673

    Article  PubMed Central  Google Scholar 

  • Schartl M (2004) A comparative view on sex determination in medaka. Mech Dev 121(7):639–645

    Article  CAS  PubMed  Google Scholar 

  • Schultheis C, Böhne A, Schartl M, Volff J, Galiana-Arnoux D (2009) Sex determination diversity and sex chromosome evolution in poeciliid fish. Sex Dev 3(2–3):68–77

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Sharrna O, Tripathi N (1998) Female heterogamety in Danio rerio (Cypriniformes: Cyprinidae). Proc Natl Acad Sci India Sect B 68:123–126

    Google Scholar 

  • Sopinka N, Capelle P, Semeniuk C, Love O (2017) Glucocorticoids in fish eggs: causes of variation and effects on offspring phenotype. Physiol Biochem Zool 90:15–33

    Article  CAS  PubMed  Google Scholar 

  • Soto CG, Leatherland JF, Noakes DL (1992) Gonadal histology in the self-fertilizing hermaphroditic fish Rivulus marmoratus (Pisces, Cyprinodontidae). Can J Zool 70(12):2338–2347

    Article  Google Scholar 

  • St. Mary CMS (1994) Sex allocation in a simultaneous hermaphrodite, the blue-banded goby (Lythrypnus dalli): the effects of body size and behavioral gender and the consequences for reproduction. Behav Ecol 5(3):304–313

    Article  Google Scholar 

  • Sunobe T, Nakazono A (1993) Sex change in both directions by alteration of social dominance in Trimma okinawae (Pisces: Gobiidae). Ethology 94(4):339–345

    Article  Google Scholar 

  • Tave D (1986) Genetics for fish hatchery managers. AVI, Westport

    Google Scholar 

  • Tomlinson J (1966) The advantages of hermaphroditism and parthenogenesis. J Theor Biol 11(1):54–58

    Article  CAS  PubMed  Google Scholar 

  • Uchida D, Yamashita M, Kitano T, Iguchi T (2002) Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. J Exp Biol 205(6):711–718

    PubMed  Google Scholar 

  • Van Rooij J, Bruggemann J, Videler J, Breeman A (1995) Plastic growth of the herbivorous reef fish Sparisoma viride: field evidence for a trade-off between growth and reproduction. Mar Ecol Prog Ser 122:93–105

    Article  Google Scholar 

  • Volff J-N, Schartl M (2001) Variability of genetic sex determination in poeciliid fishes. Genetica 111(1):101–110

    Article  CAS  PubMed  Google Scholar 

  • von Hofsten J, Olsson P-E (2005) Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes. Reprod Biol Endocrinol 3(1):63

    Article  Google Scholar 

  • Walker S, Ryen C, McCormick M (2007) Rapid larval growth predisposes sex change and sexual size dimorphism in a protogynous hermaphrodite, Parapercis snyderi Jordan & Starks 1905. J Fish Biol 71(5):1347–1357

    Article  Google Scholar 

  • Warner RR (1988) Sex change and the size-advantage model. Trends Ecol Evol 3(6):133–136

    Article  CAS  PubMed  Google Scholar 

  • Williams GC (1975) Sex and evolution, vol 8. Princeton University Press, Princeton

    Google Scholar 

  • Yamahira K, Conover DO (2003) Interpopulation variability in temperature-dependent sex determination of the tidewater silverside Menidia peninsulae (Pisces: Atherinidae). Copeia 2003(1):155–159

    Article  Google Scholar 

  • Yamamoto T-O (1969) Sex differentiation. Fish Physiol 3:117–175

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navara, K.J. (2018). The Truth About Nemo’s Dad: Sex-Changing Behaviors in Fishes. In: Choosing Sexes. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-71271-0_9

Download citation

Publish with us

Policies and ethics