Advertisement

State of the Art

  • Jesus SotoEmail author
  • Patricia Melin
  • Oscar Castillo
Chapter
  • 255 Downloads
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

In this chapter, we describe the state of the art of the computational intelligence techniques, which we use as a basis for this work.

Keywords

Computational Intelligence Techniques Genetic Algorithm Genetic Algorithm (GA) Component Neural Networks Time seriesTime Series Adaptive Linear Neuron (ADALINE) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Cowpertwait, P., Metcalfe, A.: Time Series. Introductory Time Series with R, pp. 2–5. Springer, Dordrecht (2009)zbMATHGoogle Scholar
  2. 2.
    Wei, W.W.S.: Time Series Analysis: Univariate and Multivariate Methods. Ed. Addison-Wesley 1, 40–100 (1994)Google Scholar
  3. 3.
    Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods. Oxford University Press (2001)Google Scholar
  4. 4.
    Erland, E., Ola, H.: Multivariate time series modeling, estimation and prediction of mortalities. Insur. Math. Econ. 65, 156–171 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Weina, W., Witold, P., Xiaodong, L.: Time series long-term forecasting model based on information granules and fuzzy clustering. Eng. Appl. Artif. Intell. 41, 17–24 (2015)CrossRefGoogle Scholar
  6. 6.
    Shu-Xian, L., Xian-Shuang, Y., Hong-Yun, Q., Hai-Feng, H.: A novel model of leaky integrator echo state network for time-series prediction. Neurocomputing 159, 58–66 (2015)CrossRefGoogle Scholar
  7. 7.
    Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 3rd edn. Prentice Hall, New Jersey (1994)zbMATHGoogle Scholar
  8. 8.
    Akhter, M.R., Arun, A., Sastry, V.N.: Recurrent neural network and a hybrid model for prediction of stock returns. Expert Syst. Appl. 42, 3234–3241 (2015)CrossRefGoogle Scholar
  9. 9.
    Castro, J.R., Castillo, O., Melin, P., Rodriguez, A.: A hybrid learning algorithm for interval type-2 fuzzy neural networks: the case of time series prediction, vol. 15a, pp. 363–386. Springer, Berlin (2008)Google Scholar
  10. 10.
    Karnik, N.N., Mendel, J.M.: An Introduction to Type-2 Fuzzy Logic Systems. University of Southern California, Los Angeles, CA (1998)CrossRefGoogle Scholar
  11. 11.
    Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, NJ (2001)zbMATHGoogle Scholar
  12. 12.
    Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston, MA (1996)Google Scholar
  13. 13.
    Sharkey, A.: Combining artificial neural nets: ensemble and modular multi-net systems. Springer, London (1999)CrossRefzbMATHGoogle Scholar
  14. 14.
    Sollich, P., Krogh, A.: Learning with ensembles: how over-fitting can be useful. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8, pp. 190–196. MIT Press, Cambridge (1996)Google Scholar
  15. 15.
    Hampshire, J., Waibel, A.: A novel objective function for improved phoneme recognition using time-delay neural networks. IEEE Trans. Neural Netw. 1(2), 216–228 (1990)CrossRefGoogle Scholar
  16. 16.
    Wei, L.Y., Cheng, C.H.: A hybrid recurrent neural networks model based on synthesis features to forecast the Taiwan Stock Market. Int. J. Innovative Comput. Inf. Control 8(8), 5559–5571 (2012)Google Scholar
  17. 17.
    Cherkauer, K.J.: Human expert level performance on a scientific image analysis task by a system using combined artificial neural networks. In: Chan, P., Stolfo, S., Wolpert, D. (eds.) Proceedings of AAAI-96 Workshop on Integrating Multiple Learned Models for Improving and Scaling Machine Learning Algorithms, Portland, OR, AAAI Press, Menlo Park, CA, pp. 15–21 (1996)Google Scholar
  18. 18.
    Maclin, R., Shavlik, J.W.: Combining the predictions of multiple classifiers: using competitive learning to initialize neural networks. In: Proceedings of IJCAI-95, Montreal, Canada, Morgan Kaufmann, San Mateo, CA, pp. 524–530 (1995)Google Scholar
  19. 19.
    Liu, F., Quek, C., See, G.: Neural network model for time series prediction by reinforcement learning. In: Proceedings of the International Joint Conference on the Neural Networks, Montreal, Canada (2005)Google Scholar
  20. 20.
    Soltani, S.: On the use of the wavelet decomposition for time series prediction. Neurocomputing 48(1–4), 267–277 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in neural information processing systems 7, MIT Press, Denver, CO, Cambridge, MA, pp. 231–238 (1995)Google Scholar
  22. 22.
    Opitz, D.W., Shavlik, J.W.: Generating accurate and diverse members of a neural network ensemble. in: D.S. Touretzky M.C., Mozer M.E., Hasselmo (Eds.), Advances in Neural Information Processing Systems 8, Denver, CO, MIT Press, Cambridge, MA, pp. 535–541, (1996)Google Scholar
  23. 23.
    Yao, X., Liu, F.: Evolving neural network ensembles by minimization of mutual information. Int. J. Hybrid Intell. Syst. 1, 12–21 (2004)CrossRefzbMATHGoogle Scholar
  24. 24.
    Xue, J., Xu, Z., Watada, J.: Building an integrated hybrid model for short-term and mid-term load forecasting with genetic optimization. Int. J. Innovative Comput. Inf. Control 8(10), 7381–7391 (2012)Google Scholar
  25. 25.
    Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4(2), 103–111 (1996)CrossRefGoogle Scholar
  26. 26.
    Zadeh, L.A.: Fuzzy logic. Computer 1(4), 83–93 (1988)CrossRefGoogle Scholar
  27. 27.
    Castillo, O., Melin, P.: Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review. Inf. Sci. 205, 1–19 (2012)CrossRefGoogle Scholar
  28. 28.
    Castro, J.R., Castillo, O., Martínez, L.G.: Interval type-2 fuzzy logic toolbox. Eng. Lett. 15(1), 89–98 (2007)Google Scholar
  29. 29.
    Karnik, N.N., Mendel, J.M., Qilian, L.: Type-2 fuzzy logic systems. Fuzzy Syst. IEEE Trans. 7(6), 643–658 (1999)CrossRefGoogle Scholar
  30. 30.
    Mendel, J.M.: Why we need type-2 fuzzy logic systems. Article is provided courtesy of Prentice Hall, By Jerry Mendel (2001)Google Scholar
  31. 31.
    Wu, D., Mendel, J.M.: A vector similarity measure for interval type-2 fuzzy sets and type-1 fuzzy sets. Inf. Sci. 178, 381–402 (2008)CrossRefzbMATHGoogle Scholar
  32. 32.
    Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Michigan (1975)Google Scholar
  33. 33.
    Holland, J.H.: Outline for a logical theory of adaptive systems. J. Assoc. Comput. Mach. 3, 297–314 (1962)CrossRefzbMATHGoogle Scholar
  34. 34.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company (1989)Google Scholar
  35. 35.
    Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: motivation, analysis, and first results. Complex Syst. 3, 493–530 (1989)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Gregory, J.E.R. (ed) Foundations of Genetic Algorithms, pp. 69–93. Morgan Kaufmann Publishers, San Mateo, California (1991)Google Scholar
  37. 37.
    Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold (1991)Google Scholar
  38. 38.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. AI Series. Springer, New York (1994)zbMATHGoogle Scholar
  39. 39.
    Koza, J.R.: Genetic Programming. On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  40. 40.
    Buckles, B.P., Petry, F.E.: Genetic Algorithms. IEEE Computer Society Press (1992)Google Scholar
  41. 41.
    Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science (MHS), pp. 39–43 (1995)Google Scholar
  42. 42.
    Eberhart, R., Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann, San Mateo, California (2001)Google Scholar
  43. 43.
    Engelbrech, P.: Fundamentals of Computational of Swarm Intelligence: Basic Particle Swarm Optimization, pp. 93–129. Wiley, New York (2005)Google Scholar
  44. 44.
    Escalante, H.J., Montes, M., Sucar, L.E.: Particle swarm model selection. J. Mach. Learn. Res. 10, 405–440 (2009)Google Scholar
  45. 45.
    Kennedy, J., Eberhart, R.: Particle swam optimization. Proc. IEEE Int. Conf. Neural Network (ICNN) 4, 1942–1948 (1995)CrossRefGoogle Scholar
  46. 46.
    Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multimodal complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)CrossRefGoogle Scholar
  47. 47.
    Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. Proc. IEEE Congr. Evol. Comput. 3, 1951–1957 (1999)Google Scholar
  48. 48.
    Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. Proc. IEEE Congr. Evol. Comput. 1, 84–88 (2000)Google Scholar
  49. 49.
    Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization Intelligence: Advances and Applications. Information Science Reference, pp. 18–40. USA (2010)Google Scholar
  50. 50.
    Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of the IEEE Congress of Evolutionary Computation, pp. 69–73 (1998)Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Division of Graduate StudiesTijuana Institute of TechnologyTijuanaMexico

Personalised recommendations