Brocklebank, J.C., Dickey, D.A.: SAS for Forecasting Series, pp. 6–140. SAS Institute Inc., Cary, NC, USA (2003)
MATH
Google Scholar
Brockwell, P.D., Davis, R.A.: Introduction to Time Series and Forecasting, pp. 1–219. Springer, New York (2002)
MATH
Google Scholar
Horikowa, S., Furuhashi T., Uchikawa, Y.: On fuzzy modeling using fuzzy neural networks with the backpropagation algorithm. IEEE Trans. Neural Netw. 3 (1992)
Google Scholar
Melin, P., Soto, J., Castillo, O., Soria, J.: A new approach for time series prediction using ensembles of ANFIS models. Experts Syst. Appl. 39(3), 3494–3506 (2012)
CrossRef
Google Scholar
Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1992)
Google Scholar
Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and Soft Computing. Prentice-Hall, New York (1997)
Google Scholar
Lin, Y.C., Lee, C.H.: System identification and adaptive filter using a novel fuzzy neuro system. Int. J. Comput. Cogn. 5(1), 2 (2007)
Google Scholar
Hagras, H.: Comments on dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. Syst. Man Cybern. Part B 36(5), 1206–1209 (2006)
CrossRef
Google Scholar
Wang, C.H., Cheng, C.S., Lee, T.T.: Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34(3), 1462–1477 (2004)
CrossRef
Google Scholar
Lee, C.H., Lin, Y.C.: Type-2 fuzzy neuro system via input-to-state-stability approach. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) International Symposium on Neural Networks, vol. 4492, pp. 317–327. Springer, Heidelberg, LNCS (2007)
Google Scholar
Lee, C.H., Hong, J.L., Lin, Y.C., Lai, W.Y.: Type-2 fuzzy neural network systems and learning. Int. J. Comput. Cogn. 1(4), 79–90 (2003)
Google Scholar
Ascia, G., Catania, V., Panno, D.: An integrated fuzzy-GA approach for buffer management. IEEE Trans. Fuzzy Syst. 14(4), 528–541 (2006)
CrossRef
Google Scholar
Pedrycz, W.: Fuzzy Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (1997)
CrossRef
MATH
Google Scholar
Chiou, Y.C., Lan, L.W.: Genetic fuzzy logic controller: an iterative evolution algorithm with new encoding method. Fuzzy Sets Syst. 152(3), 617–635 (2005)
MathSciNet
CrossRef
MATH
Google Scholar
Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst. 3, 260–270 (1995)
CrossRef
Google Scholar
Gaxiola, F., Melin, P., Valdez, F., Castillo, O.: Optimization of type-2 fuzzy weight for neural network using genetic algorithm and particle swarm optimization. In: World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 22–28 (2013)
Google Scholar
Wu, D., Wan-Tan, W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Eng. Appl. Artif. Intell. 19(8), 829–841 (2006)
CrossRef
Google Scholar
Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7, 1–13 (1975)
CrossRef
MATH
Google Scholar
Zadeh, L.A.: Fuzzy logic, neural networks and soft computing. Commun. ACM 37(3), 77–84 (1994)
CrossRef
Google Scholar
Pedrycz, W.: Fuzzy Modelling: Paradigms and Practice. Kluwer Academic Press, Dordrecht (1996)
CrossRef
MATH
Google Scholar
Takagi, T., Sugeno, M.: Derivation of fuzzy control rules from human operation control actions. In: Proceedings of the IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, pp. 55–60 (1983)
Google Scholar
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)
Google Scholar
Karnik, N.N., Mendel, J.M.: Applications of type-2 fuzzy logic systems to forecasting of time-series. Inf. Sci. 120, 89–111 (1999)
CrossRef
MATH
Google Scholar
Wu, D., Mendel, J.M.: A vector similarity measure for interval type-2 fuzzy sets and type-1 fuzzy sets. Inf. Sci. 178, 381–402 (2008)
CrossRef
MATH
Google Scholar
Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, NJ (2001)
MATH
Google Scholar
Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston, MA (1996)
Google Scholar
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, NJ (2003)
MATH
Google Scholar
Haykin, S.: Adaptive Filter Theory. Prentice Hall, Englewood Cliffs. ISBN 0-13-048434-2 (2002)
Google Scholar
Pulido, M., Melin, P., Castillo, O.: Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange. Inf. Sci. 280, 188–204 (2014)
MathSciNet
CrossRef
MATH
Google Scholar
Soto, J., Melin, P., Castillo, O.: Time series prediction using ensembles of ANFIS models with genetic optimization of interval type-2 and type-1 fuzzy integrators. Int. J. Hybrid Intel. Syst. 11(3), 211–226 (2014)
CrossRef
Google Scholar
Bonissone, P.P., Subbu, R., Eklund, N., Kiehl, T.R.: Evolutionary algorithms + domain knowledge = real-world evolutionary computation. IEEE Trans. Evol. Comput. 10(3), 256–280 (2006)
CrossRef
Google Scholar
Engelbrech, P.: Fundamentals of Computational of Swarm Intelligence: Basic Particle Swarm Optimization, pp. 93–129. Wiley, New York (2005)
Google Scholar
Deb, K.: A population-based algorithm-generator for real-parameter optimization. Springer, Heidelberg (2005)
MATH
Google Scholar