Skip to main content

Introduction

  • 339 Accesses

Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSINTELL)

Abstract

Based on the evolution of a variable or a set of variables given in a time series, to predict future values of this variable we should seek the dynamic laws governing the real state of the system over time. This preliminary step is the prediction modeling process. In short, time series analysis aims at drawing conclusions about a complex system using past data.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-71264-2_1
  • Chapter length: 3 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-71264-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)

References

  1. Brocklebank, J.C., Dickey, D.A.: SAS for Forecasting Series, pp. 6–140. SAS Institute Inc., Cary, NC, USA (2003)

    MATH  Google Scholar 

  2. Brockwell, P.D., Davis, R.A.: Introduction to Time Series and Forecasting, pp. 1–219. Springer, New York (2002)

    MATH  Google Scholar 

  3. Horikowa, S., Furuhashi T., Uchikawa, Y.: On fuzzy modeling using fuzzy neural networks with the backpropagation algorithm. IEEE Trans. Neural Netw. 3 (1992)

    Google Scholar 

  4. Melin, P., Soto, J., Castillo, O., Soria, J.: A new approach for time series prediction using ensembles of ANFIS models. Experts Syst. Appl. 39(3), 3494–3506 (2012)

    CrossRef  Google Scholar 

  5. Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1992)

    Google Scholar 

  6. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-fuzzy and Soft Computing. Prentice-Hall, New York (1997)

    Google Scholar 

  7. Lin, Y.C., Lee, C.H.: System identification and adaptive filter using a novel fuzzy neuro system. Int. J. Comput. Cogn. 5(1), 2 (2007)

    Google Scholar 

  8. Hagras, H.: Comments on dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. Syst. Man Cybern. Part B 36(5), 1206–1209 (2006)

    CrossRef  Google Scholar 

  9. Wang, C.H., Cheng, C.S., Lee, T.T.: Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. Syst. Man Cybern. Part B: Cybern. 34(3), 1462–1477 (2004)

    CrossRef  Google Scholar 

  10. Lee, C.H., Lin, Y.C.: Type-2 fuzzy neuro system via input-to-state-stability approach. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) International Symposium on Neural Networks, vol. 4492, pp. 317–327. Springer, Heidelberg, LNCS (2007)

    Google Scholar 

  11. Lee, C.H., Hong, J.L., Lin, Y.C., Lai, W.Y.: Type-2 fuzzy neural network systems and learning. Int. J. Comput. Cogn. 1(4), 79–90 (2003)

    Google Scholar 

  12. Ascia, G., Catania, V., Panno, D.: An integrated fuzzy-GA approach for buffer management. IEEE Trans. Fuzzy Syst. 14(4), 528–541 (2006)

    CrossRef  Google Scholar 

  13. Pedrycz, W.: Fuzzy Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (1997)

    CrossRef  MATH  Google Scholar 

  14. Chiou, Y.C., Lan, L.W.: Genetic fuzzy logic controller: an iterative evolution algorithm with new encoding method. Fuzzy Sets Syst. 152(3), 617–635 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst. 3, 260–270 (1995)

    CrossRef  Google Scholar 

  16. Gaxiola, F., Melin, P., Valdez, F., Castillo, O.: Optimization of type-2 fuzzy weight for neural network using genetic algorithm and particle swarm optimization. In: World Congress on Nature and Biologically Inspired Computing (NaBIC), pp. 22–28 (2013)

    Google Scholar 

  17. Wu, D., Wan-Tan, W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Eng. Appl. Artif. Intell. 19(8), 829–841 (2006)

    CrossRef  Google Scholar 

  18. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7, 1–13 (1975)

    CrossRef  MATH  Google Scholar 

  19. Zadeh, L.A.: Fuzzy logic, neural networks and soft computing. Commun. ACM 37(3), 77–84 (1994)

    CrossRef  Google Scholar 

  20. Pedrycz, W.: Fuzzy Modelling: Paradigms and Practice. Kluwer Academic Press, Dordrecht (1996)

    CrossRef  MATH  Google Scholar 

  21. Takagi, T., Sugeno, M.: Derivation of fuzzy control rules from human operation control actions. In: Proceedings of the IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, pp. 55–60 (1983)

    Google Scholar 

  22. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)

    Google Scholar 

  23. Karnik, N.N., Mendel, J.M.: Applications of type-2 fuzzy logic systems to forecasting of time-series. Inf. Sci. 120, 89–111 (1999)

    CrossRef  MATH  Google Scholar 

  24. Wu, D., Mendel, J.M.: A vector similarity measure for interval type-2 fuzzy sets and type-1 fuzzy sets. Inf. Sci. 178, 381–402 (2008)

    CrossRef  MATH  Google Scholar 

  25. Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, NJ (2001)

    MATH  Google Scholar 

  26. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston, MA (1996)

    Google Scholar 

  27. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, NJ (2003)

    MATH  Google Scholar 

  28. Haykin, S.: Adaptive Filter Theory. Prentice Hall, Englewood Cliffs. ISBN 0-13-048434-2 (2002)

    Google Scholar 

  29. Pulido, M., Melin, P., Castillo, O.: Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange. Inf. Sci. 280, 188–204 (2014)

    MathSciNet  CrossRef  MATH  Google Scholar 

  30. Soto, J., Melin, P., Castillo, O.: Time series prediction using ensembles of ANFIS models with genetic optimization of interval type-2 and type-1 fuzzy integrators. Int. J. Hybrid Intel. Syst. 11(3), 211–226 (2014)

    CrossRef  Google Scholar 

  31. Bonissone, P.P., Subbu, R., Eklund, N., Kiehl, T.R.: Evolutionary algorithms + domain knowledge = real-world evolutionary computation. IEEE Trans. Evol. Comput. 10(3), 256–280 (2006)

    CrossRef  Google Scholar 

  32. Engelbrech, P.: Fundamentals of Computational of Swarm Intelligence: Basic Particle Swarm Optimization, pp. 93–129. Wiley, New York (2005)

    Google Scholar 

  33. Deb, K.: A population-based algorithm-generator for real-parameter optimization. Springer, Heidelberg (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Soto .

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 The Author(s)

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Soto, J., Melin, P., Castillo, O. (2018). Introduction. In: Ensembles of Type 2 Fuzzy Neural Models and Their Optimization with Bio-Inspired Algorithms for Time Series Prediction. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-71264-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71264-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71263-5

  • Online ISBN: 978-3-319-71264-2

  • eBook Packages: EngineeringEngineering (R0)