Skip to main content

C++ Playground for Numerical Integration Method Developers

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 793))

Included in the following conference series:

  • 921 Accesses

Abstract

A C++ framework for investigating numerical integration methods for ordinary differential equations (ODE) is presented. The paper discusses the design of the software, rather than the numerical methods. The framework consists of header files defining a set of template classes. Those classes represent key abstractions to be used for constructing an ODE solver and to monitor its behavior. Several solvers are implemented and work out-of-the-box. The framework is to be used as a playground for those who need to design an appropriate numerical integration method for the problem at hand. An example of usage is provided. The source code of the framework is available on GitHub under the GNU GPL license.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The source code of the framework is available at https://github.com/deadmorous/ode_num_int.

References

  1. Blochwitz, T., et al.: The functional mockup interface for tool independent exchange of simulation models. In: Proceedings of the 8th International Modelica Conference (2011)

    Google Scholar 

  2. Hindmarsh, A.C., et al.: SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31, 363–396 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ahnert, K., Mulansky, M.: Odeint – solving ordinary differential equations in C++. In: IP Conference Proceedings, vol. 1389, pp. 1586–1589 (2011)

    Google Scholar 

  4. Schling, B.: The Boost C++ Libraries. XML Press (2011)

    Google Scholar 

  5. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd Revised edn. Springer, Heidelberg (1993)

    Google Scholar 

  6. Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations. Comput. J. 5, 329–330 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  7. Steihaug, T., Wolfbrandt, A.: An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff differential equations. Math. Comp. 33, 521–534 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Griewank, A., Juedes, D., Utke, J.: Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Softw. 22(2), 131–167 (1996)

    Article  MATH  Google Scholar 

  9. Brown, J., Brune, P.: Low-rank quasi-Newton updates for robust Jacobian lagging in Newton-type methods. In: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, pp. 2554–2565 (2013)

    Google Scholar 

  10. Gamma, E.: Design Patterns. Addison-Wesley, Boston (1994)

    Google Scholar 

  11. Lazar, G., Penea, R.: Mastering Qt 5. Packt Publishing, Ltd. (2017)

    Google Scholar 

  12. Ypma, T.J.: Efficient estimation of sparse Jacobian matrices by differences. J. Comput. Appl. Math. 18(1), 17–28 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  13. Golub, G.H., Van Loan, Ch.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  14. Broyden, C.: A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19(92), 577–593 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hart, W.E., Soesianto, F.: On the solution of highly structured nonlinear equations. J. Comput. Appl. Math. 40(3), 285–296 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Shabrov, N., Ispolov, Yu., Orlov, S.: Simulations of continuously variable transmission dynamics. ZAMM 94(11), 917–922 (2014). Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan Orlov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orlov, S. (2017). C++ Playground for Numerical Integration Method Developers. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2017. Communications in Computer and Information Science, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-71255-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71255-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71254-3

  • Online ISBN: 978-3-319-71255-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics