Computational Modeling of Turbulent Structuring of Molecular Clouds Based on High Resolution Calculating Schemes

  • Boris RybakinEmail author
  • Valery Goryachev
  • Stepan Ageev
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 793)


The article submits the results of 3D computational modeling of the adiabatic interaction between a shock wave and molecular clouds, central impact and glancing collision between them, in the case of counter movement. According to the problem set in the first case, two spherical clouds with pre-established density fields interact with the post-shock medium of supernova blast remnants. It is demonstrated that the collision give rise to the supersonic turbulence in a cloud mixing zone, the formation of cone-like filamentous structures, the significant stratification of gas density and the disruption of clouds. Problems of vortex filaments origination in clouds wakes are analyzed after simulation of supersonic forward and glancing collision of two molecular clouds.


Parallel computing Supersonic turbulence Shock waves Small molecular clouds 



The work has been funded by the Russian Foundation for Basic Research grants No. 16-29-15099, 17-07-00569.


  1. 1.
    Ferriere, K.M.: The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001)CrossRefGoogle Scholar
  2. 2.
    Vázquez—Semandeni, E., Ostriker, E.C., Passot, T., Gammie, C.F., Stone, J.M.: Compressible MHD turbulence: implications for molecular cloud and star formation. In: Mannings, V. et al. (eds.), Protostars and Planets IV, University of Arizona, Tucson, pp. 3–28 (2000)Google Scholar
  3. 3.
    Beuther, H., Ragan, S.E., Johnston, K., Henning, T., Hacar, A., Kainulainen, J.T.: Filament fragmentation in high-mass star formation. A&A 584(A67), 1–12 (2015)Google Scholar
  4. 4.
    Truelove, J.K., Klein, R.I., McKee, C.F., Holliman, J.H., Howell, L.H., Greenough, J.A., Woods, D.T.: Self-gravitational hydrodynamics with 3-D adaptive mesh refinement: methodology and applications to molecular cloud collapse and fragmentation. ApJ 495, 821 (1998)CrossRefGoogle Scholar
  5. 5.
    Bate, M.R., Bonnell, I.A., Price, N.M.: Modeling accretion in protobinary systems, monthly notices of the royal astronomical society. MNRAS 277(2), 362–376 (1995)CrossRefGoogle Scholar
  6. 6.
    Price, D.J., Monaghan, J.J.: An energy conserving formalism for adaptive gravitational force softening in SPH and N-body codes. MNRAS 374, 1347–1358 (2007)CrossRefGoogle Scholar
  7. 7.
    Vinogradov, S.B., Berczik, P.P.: The study of colliding molecular clumps evolution. Astron. Astrophys. Trans. 25(4), 299–316 (2006)CrossRefGoogle Scholar
  8. 8.
    Arreagga-Garcia, G., Klapp, J., Morales, J.S.: Simulations of colliding uniform density H2 clouds. Int. J. Astr. Astrophys. 4, 192–220 (2014)CrossRefGoogle Scholar
  9. 9.
    Lucas, W.E., Bonnel, I.A., Forgan, D.H.: Can the removal of molecular cloud envelopes by external feedback affect the efficiency of star formation? MNRAS 469(2) (2017)Google Scholar
  10. 10.
    Pittard, J.M., Falle, S.A.E.G., Hartquist, T.W., Dyson, J.E.: The turbulent destruction of clouds. MNRAS 394, 1351–1378 (2009)CrossRefGoogle Scholar
  11. 11.
    Elmegreen, B.G.: Star formation in a crossing time. Astrophys. J. 530(277), 281 (2000)Google Scholar
  12. 12.
    Dawson, J.R., Ntormousi, E., Fukui, Y., Hayakawa, T., Fierlinger, K.: The Astrophysical Journal, 799(64) (2015)Google Scholar
  13. 13.
    Johansson, E.P.G., Ziegler, U.: Radiative interaction of shocks with small interstellar clouds as a pre-stage to star formation. Astrophys. J. 766, 1–20 (2011)Google Scholar
  14. 14.
    Nakamura, F., McKee, C.F., Klein, R.I., Fisher, R.T.: On the hydrodynamic interaction of shock waves with interstellar clouds. II. The effect of smooth cloud boundaries on cloud destruction and cloud turbulence. Astrophys. J. 164, 477–505 (2006)Google Scholar
  15. 15.
    Pittard, J.M., Parkin, E.R.: The turbulent destruction of clouds – III. Three dimensional adiabatic shock-cloud simulations. MNRAS 457(4), 1–30 (2015)Google Scholar
  16. 16.
    Pittard, J.M., Goldsmith, K.J.A.: Numerical simulations of a shock-filament interaction. MNRAS 458(1), 1–25 (2015)Google Scholar
  17. 17.
    Melioli, C., de Gouveia Dal Pino, E., Raga, A.: Multidimensional hydro dynamical simulations of radiative cooling SNRs-clouds interactions: an application to starburst environments. Astronomy Astrophys. 443, 495–508 (2005)Google Scholar
  18. 18.
    Godunov, S.K.: A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations. Math. Sbornik. 47, 271–306 (1959)zbMATHGoogle Scholar
  19. 19.
    Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comp. Phys. 49, 357–393 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 727 p. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Rybakin, B.P., Stamov, L.I., Egorova, E.V.: Accelerated solution of problems of combustion gas dynamics on GPUs. Comput. Fluids 90, 164–171 (2014)CrossRefGoogle Scholar
  23. 23.
    Rybakin, B., Smirnov, N., Goryachev, V.: Parallel algorithm for simulation of fragmentation and formation of filamentous structures in molecular clouds. In: Voevodin, V., Sobolev, S. (eds.) CCIS 687, RuSCDays 2016, vol. 687, pp. 146–157 (2016)Google Scholar
  24. 24.
    Kritsuk, A.G., Norman, M.L., Padoan, P., Wagner, R.: In turbulence and nonlinear processes in astrophysical plasmas. American Institute of Physical Conference Series, Shaikh, D., Zank, G.P. (eds.), vol. 932, pp. 393–399, ApJ, 665, 416 (2007)Google Scholar
  25. 25.
    Shu, F.H., Adams, F.C., Lizano, S.: Star formation in molecular clouds - observation and theory. ARA&A, pp. 25–23 (1987)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Gas and Wave DynamicsMoscow State UniversityMoscowRussia
  2. 2.Department of MathematicsTver State Technical UniversityTverRussia

Personalised recommendations