Skip to main content

Dynamic Analysis, Electronic Circuit Realization of Mathieu-Duffing Oscillator and Its Synchronization with Unknown Parameters and External Disturbances

  • Chapter
  • First Online:
  • 1223 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 133))

Abstract

This chapter deals with dynamic analysis, electronic circuit realization and adaptive function projective synchronization (AFPS) of two identical coupled Mathieu-Duffing oscillators with unknown parameters and external disturbances. The dynamics of the Mathieu-Duffing oscillator is investigated with the help of some classical nonlinear analysis techniques such as bifurcation diagrams, Lyapunov exponent plots, phase portraits as well as frequency spectrum. It is found that the oscillator experiences very rich and striking behaviors including periodicity, quasi-periodicity and chaos. An appropriate electronic circuit capable to mimic the dynamics of the Mathieu-Duffing oscillator is designed. The correspondences are established between the parameters of the system model and electronic components of the proposed circuit. A good agreement is obtained between the experimental measurements and numerical results. Furthermore, based on Lyapunov stability theory, adaptive controllers and sufficient parameter updating laws are designed to achieve the function projective synchronization between two identical drive-response structures of Mathieu-Duffing oscillators. The external disturbances are taken into account in the drive and response systems in order to verify the robustness of the proposed strategy. Analytical calculations and numerical simulations are performed to show the effectiveness and feasibility of the method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • An H-L, Chen Y (2009) The function cascade synchronization scheme for discrete-time hyperchaotic systems. Commun Nonlinear Sci Numer Simul 14:1494–1501

    Article  MathSciNet  MATH  Google Scholar 

  • Banerjee R (2010) Chaos Synchronization and Cryptography for Secure communications. IGI Global, USA

    Google Scholar 

  • Buscarino A, Fortuna L, Frasca M (2009) Experimental robust synchronization of hyperchaotic circuits. Phys D 238:1917–1922

    Article  MATH  Google Scholar 

  • Chen Y, Li X (2007) Function projective synchronization between two identical chaotic systems. Int J Mod Phys C 18:2246–2255

    Google Scholar 

  • Chitra RN, Kuriakose VC (2008) Phase synchronization in an array of driven Josephson junctions. Chaos 18:0131251

    Article  MATH  Google Scholar 

  • Corless RM, Parkinson GV (1988) A model of the combined effects of vortex-induced vibration and galloping. J Fluids Struct 2:203–220

    Article  Google Scholar 

  • Corless RM, Parkinson GV (1993) A model of the combined effects of vortex-induced vibration and galloping part II. J Fluids Struct 7:825–848

    Article  Google Scholar 

  • Dalkiran Fatma Yildirim, Sprott JC (2016) Simple chaotic hyperjerk system. Int J Bifurcat Chaos 26:1650189

    Article  MathSciNet  Google Scholar 

  • Fei Y, Chunhua W, Qiuzhen W, Yan H (2013) Complete switched modified function projective synchronization of a five-tern chaotic system with uncertain parameters and disturbances. Pramana J Phys 80:223–235

    Article  Google Scholar 

  • Fu G (2012) Robust adaptive modified function projective synchronization of hyperchaotic systems subject to external disturbance. Commun Nonlinear Sci Numer Simul 17:2602–2608

    Article  MathSciNet  MATH  Google Scholar 

  • Guckenheimer J, Holmes PJ (1984) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer, Berlin

    MATH  Google Scholar 

  • Hayashi C (1964) Nonlinear oscillations in physical systems. McGraw Hill, New York

    MATH  Google Scholar 

  • Hongyue D, Feng L, Guangshi M (2011) Robust function projective synchronization of two different chaotic systems with unknown parameters. J Franklin Inst 348:2782–2794

    Article  MathSciNet  MATH  Google Scholar 

  • Kareem SO, Ojo KS, Njah AN (2012) Function projective synchronization of identical and non-identical modified finance and Shimizu-Morioka systems. Pramana J Phys 79:71–79

    Article  Google Scholar 

  • Koyuncu I, Ozecerit AT, Pehlivan I (2014) Implementation of FPGA-based real time novel chaotic oscillator. Nonlinear Dyn 77:49–59

    Article  MathSciNet  Google Scholar 

  • Li X, Chen Y (2007) Function projective synchronization of two identical new hyperchaotic systems. Commun Theoret Phys 48:864–870

    Article  MathSciNet  Google Scholar 

  • Ma J, Wu X, Chu R et al (2014) Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn 76:1951–1962

    Article  Google Scholar 

  • Mahmoud GM, Mansour EA (2011) A hyperchaotic complex system generating two-, three-, and four-scroll attractors. J Vib Control 18:841–849

    Article  MathSciNet  MATH  Google Scholar 

  • Moon FC, Johnson MA (1998) Nonlinear dynamics and chaos in manufacturing processes. Wiley, New York

    Book  Google Scholar 

  • Parlitz U, Lauterborn W (1987) Period-doubling cascades and devil’s staircases of the driven van der Pol oscillator. Phys Rev A 36:1428–1434

    Article  Google Scholar 

  • Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824

    Article  MathSciNet  MATH  Google Scholar 

  • Ping Z, Yu-xia C (2010) Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems. Chin Phys 19:100507–100511

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran, vol 77. Cambridge University Press

    Google Scholar 

  • Rajasekar S, Parthasarathy S, Lakshmanan M (1992) Prediction of horseshoe chaos in BVP and DVP oscillators. Chaos, Solitons Fractals 2:208–271

    Article  MathSciNet  MATH  Google Scholar 

  • Sharma Anjali, Patidar Vinod, Purohit G, Sud KK (2012) Effects on the bifurcation and chaos in forced Duffing oscillator due to nonlinear damping. Commun Nonlinear Sci Numer Simul 17:2254–2269

    Article  MathSciNet  Google Scholar 

  • Shen J, Chen S (2009) An open-plus-closed-loop control for chaotic Mathieu-Duffing oscillator. Appl Math Mech Engl Ed 30:19–27

    Article  MathSciNet  MATH  Google Scholar 

  • Shen JH, Lin KC, Chen SH, Sze KY (2008) Bifurcation and route-to-chaos analyses for Mathieu-Duffing oscillator by the incremental harmonic balance method. Nonlinear Dyn 52:403–414

    Article  MATH  Google Scholar 

  • Siewe Siewe M, Tchawoua C, Woafo P (2010) Melnikov chaos in a periodically driven Rayleigh-Duffing oscillator. Mech Res Commun 37:363–368

    Article  MATH  Google Scholar 

  • Srivastava M, Agrawal SK, Subir D (2013) Adaptive projective synchronization between different chaotic systems with parametric uncertainties and external disturbances. Pramana J Phys 81:417–437

    Article  Google Scholar 

  • Steeb WH, Kunick A (1987) Chaos in limit cycle systems with external periodic excitation. Int J Nonlinear Mech 1987(349):361–422

    MATH  Google Scholar 

  • Trejo-Guerra R, Tlelo-Cuautle E, Jimenez-Fuentes JM, Sanchez-Lopez C, Munoz-Pacheco JM, Espinosa-Flores-Verdad G, Rocha-Perez JM (2012) Integrated circuit generating 3- and 5- scroll attractors. Commun Nonlinear Sci Numer Simul 17:4328–4335

    Article  MathSciNet  Google Scholar 

  • Venkatesan A, Lakshmanan M (1997) Bifurcation and chaos in the double-well Duffing-van der Pol oscillator: numerical and analytical studies. Phys Rev E 56:6321–6330

    Article  MathSciNet  Google Scholar 

  • Vincent UE, Laoye JA, Kareem SO (2008) Control and synchronization of chaos in RCL-shunted Josephson junction using backstepping design. Physica C 468:374–382

    Article  Google Scholar 

  • Volos CK, Kyprianidis IM, Stouboulus INA (2012) Chaotic path planning generator for autonomous mobile robots. Robot Auton Syst 60:651–656

    Article  Google Scholar 

  • Volos CK, Kyprianidis IM, Stouboulus IN (2013a) Image encryption process based on chaotic synchronization phenomena. Signal Process 93:1328–1340

    Article  Google Scholar 

  • Volos CK, Kyprianidis IM, Stouboulus IN (2013b) Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robot Auton Syst 61:1314–1322

    Article  Google Scholar 

  • Wen SF, Shen YJ, Wang XN, Yang SP, Xing HJ (2016) Dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation. Chaos 26:084309

    Article  MathSciNet  MATH  Google Scholar 

  • Wen SF, Shen YJ, Yang SP, Wang J (2017) Dynamical response of Mathieu-Duffing oscillator with fractional-order delayed feedback. Chaos, Solitons Fractals 94:54–62

    Article  MathSciNet  MATH  Google Scholar 

  • Wolf A, Swift JB, Swinney HL, Wastano JA (1985) Determining Lyapunov exponents from time series. Phys D 16:285–317

    Article  MathSciNet  MATH  Google Scholar 

  • Yang M, Cai B, Cai G (2010) Projective synchronization of a modified three dimensional chaotic finance system. Int J Nonlinear Sci 10:32–38

    MathSciNet  MATH  Google Scholar 

  • Yang JH, Sanjuan MAF, Liu HG (2015) Bifurcation and resonance in a fractional Mathieu-Duffing oscillator. Eur Phys J B 88:310–318

    Article  MathSciNet  Google Scholar 

  • Yu P, Shah AH, Popplewell N (1992) Inertially coupled galloping of iced conductors. ASME J Appl Mach 59:140–145

    Article  Google Scholar 

  • Yu P, Desai YM, Shah AH, Popplewell N (1993a) Three-degree-of-freedom model for galloping. Part I Formulation ASME J Eng Mech 119:2404–2425

    Google Scholar 

  • Yu P, Desai YM, Popplewell N, Shah AH (1993b) Three-degree-of-freedom model for galloping. Part II Solutions ASME J Eng Mech 119:2426–2448

    Google Scholar 

  • Yu W, Chen G, Cao J, Lu J, Parlitz U (2007). Parameter identification of dynamical systems from time series, Phys. Rev. E, 75: 067201–067204

    Google Scholar 

  • Zhan M, Wang X, Gong X, Wei GW, Lai CH (2003) Complete synchronization and generalized synchronization of one-way coupled time-delay systems. Phys Rev E Stat Nonlinear Sot Matter Phys 68:036208

    Article  Google Scholar 

  • Zhiyong S, Gangauan S, Fuhong M, Yanbin Z (2012) Adaptive modified function projective synchronization and parameter identification of uncertain hyperchaotic (chaotic) systems with identical or non-identical structures. Nonlinear Dyn 68:471–486

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu S, Wu L (2004) Anticipating and lag synchronization in chaotic laser system. Int. J. Mod. Phys. 18:2547–2551

    Article  Google Scholar 

  • Zhu HL, Zhang XB (2009) Modified Projective Synchronization of different hyperchaotic systems. J Inf Comput Sci 4:33–40

    Google Scholar 

Download references

Acknowledgements

V. Kamdoum Tamba wishes to thank Dr. Sifeu Takougang Kingni (University of Maroua, Cameroon) for interesting discussions and careful reading of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Kamdoum Tamba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tamba, V.K., Tagne, F.K., Ngouonkadi, E.B.M., Fotsin, H.B. (2018). Dynamic Analysis, Electronic Circuit Realization of Mathieu-Duffing Oscillator and Its Synchronization with Unknown Parameters and External Disturbances. In: Pham, VT., Vaidyanathan, S., Volos, C., Kapitaniak, T. (eds) Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors. Studies in Systems, Decision and Control, vol 133. Springer, Cham. https://doi.org/10.1007/978-3-319-71243-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71243-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71242-0

  • Online ISBN: 978-3-319-71243-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics