Advertisement

4-D Memristive Chaotic System with Different Families of Hidden Attractors

  • Dimitrios A. Prousalis
  • Christos K. Volos
  • Viet-Thanh Pham
  • Ioannis N. Stouboulos
  • Ioannis M. Kyprianidis
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 133)

Abstract

The design of systems without equilibrium or with line of equilibrium points is a subject which has started to attract the interest of the research community the last decade. In this direction, various chaotic systems with hidden attractors, which are based on memristors or memristive systems, have been proposed. In this chapter a new 4-D memristive system is presented. The peculiarity of the model is that it displays a line of equilibrium points for a range of the parameters as well as no-equilibrium for another range of the parameters. System in both occasions presents a chaotic behavior with hidden attractors. The behavior of the proposed system is investigated through numerical simulations, by using phase portraits, Lyapunov exponents and bifurcation diagrams. The adaptive control scheme of the system is presented in order to prove that the memristive system’s dynamical behavior can be controlled. Also, we have designed an electronic circuit to confirm the feasibility of the system in both cases.

Keywords

Memristive system Hidden attractor Chaos control 

References

  1. Azar AT, Vaidyanathan S (2015) Analysis and control of a 4-D novel hyperchaotic system. Stud Comput Intell 581:3–17MathSciNetGoogle Scholar
  2. Bogdan M, Buga M, Medianu R, Cepisca C, Bardis N (2011) Obtaining a model of photovoltaic cell with optimized quantum efficiency. Sci Bull Electr Eng Fac 2(16):1843–6188Google Scholar
  3. Banerjee T, Biswas D, Sarkar BC (2012a) Design and analysis of a first order time-delayed chaotic system. Nonlinear Dyn 70(1):721–734MathSciNetCrossRefGoogle Scholar
  4. Banerjee T, Biswas D, Sarkar BC (2012b) Design of chaotic and hyperchaotic time-delayed electronic circuit. Bonfring Int J Power Syst Integr Circuits 2(4):13CrossRefGoogle Scholar
  5. Banerjee T, Biswas D (2013) Theory and experiment of a first-order chaotic delay dynamical system. Int J Bifurc Chaos 23(06):1330020MathSciNetCrossRefzbMATHGoogle Scholar
  6. Banerjee S (2010) Chaos synchronization and cryptography for secure communications. Applications for encryption: applications for encryption IGI Global2010Google Scholar
  7. Bao B, Jiang T, Xu Q, Chen M, Wu H, Hu Y (2016) Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn 1–13Google Scholar
  8. Biswas D, Banerjee T (2016) A simple chaotic and hyperchaotic time-delay system: design and electronic circuit implementation. Nonlinear Dyn 83(4):2331–2347MathSciNetCrossRefGoogle Scholar
  9. Borah M, Singh PP, Roy BK (2016) Improved chaotic dynamics of a fractional-order system, its chaos-suppressed synchronisation and circuit implementation. Circuits Syst Signal Process 35:1871–1907MathSciNetCrossRefzbMATHGoogle Scholar
  10. Bouali S, Buscarino A, Fortuna L, Frasca M, Gambuzza LV (2012) Emulating complex business cycles by using an electronic analogue. Nonlinear Anal Real World Appl 13:2459–2465Google Scholar
  11. Cao C, Ma L, Xu Y (2012) Adaptive control theory and applications. J Control Sci Eng 827353:2Google Scholar
  12. Cepisca C, Grigorescu SD, Ganatsios S, Bardis NG (2008) Passive and active compensations for current transformers. Metrologie 5–10Google Scholar
  13. Cepisca C, Bardis NG (2011) Measurement and control in street lighting. Electra publicationGoogle Scholar
  14. Chen Y, Jung GY, Ohlberg DA, Li XM, Stewart DR, Jeppesen JO et al (2003) Nanoscale molecular-switch crossbar circuits. Nanotechology 14:462–468CrossRefGoogle Scholar
  15. Chen M, Li M, Yu Q, Bao B, Xu Q, Wang J (2015) Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chuas circuit. Nonlinear Dyn 81(1–2):215–226MathSciNetCrossRefGoogle Scholar
  16. Chua LO (1971) Memristors-the missing circuit element. In: IEEE transactions on circuit theory, vol CT-18, pp 507–519Google Scholar
  17. Chua LO, Kang SM (1976) Memristive devices and systems. In: Proceeding of the IEEE no 23, pp 209–223. SIAMGoogle Scholar
  18. Cicek S, Uyaroglu Y, Pehlivan I (2010) Simulation and circuit implementation of sprott case H chaotic system and its synchronization application for secure communication systems. J Circuits Syst Comput 22:1350022CrossRefGoogle Scholar
  19. Corinto F, Ascoli A (2012a) Memristor based elements for chaotic circuits. PIEICE Nonlinear Theory Appl 3(3):336–356CrossRefGoogle Scholar
  20. Corinto F, Ascoli A (2012b) Analysis of current-voltage characteristics for memristive elements in pattern recognition systems. Int J Circuit Theory Appl 40(12):1277–1320CrossRefGoogle Scholar
  21. Driscoll T, Quinn J, Klein S, Kim HT, Kim BJ, Pershin YV, Di Ventra M, Basov DN (2010) Memristive adaptive filters. Appl Phys Lett 97:093502-1–3CrossRefGoogle Scholar
  22. Elwakil A, Ozoguz S (2003) Chaos in pulse-excited resonator with self feedback. Electron Lett 39:831–3CrossRefGoogle Scholar
  23. Fatemi-Behbahani E, Ansari-Asl K, Farshidi E (2016) A new approach to analysis and design of chaos-based random number generators using algorithmic converter. Circuits Syst Signal Process 35:3830–3846CrossRefGoogle Scholar
  24. Itoh M, Chua LO (2008) Memristor oscillators. Int J Bifurc Chaos 18:3183–3206MathSciNetCrossRefzbMATHGoogle Scholar
  25. Khalil HK (2001) Nonlinear systems, 3rd edn. Prentice Hall, New JerseyGoogle Scholar
  26. Kingni ST, Pham VT, Jafari S, Kol GR, Woafo P (2016) Three-dimensional chaotic autonomous system with a circular equilibrium: analysis, circuit implementation and its fractional-order form. Circuits, Syst Signal Process 35:1933–1948MathSciNetCrossRefzbMATHGoogle Scholar
  27. Koyuncu I, Ozcerit AT, Pehlivan I (2014) Implementation of FPGA-based real time novel chaotic oscillator. Nonlinear Dyn 77:49–59MathSciNetCrossRefGoogle Scholar
  28. Kuznetsov NV, Leonov GA, Vagaitsev VI (2010) Analytical-numerical method for attractor localization of generalized Chuas system. in: IFAC proceedings volumes (IFAC-Papers Online), p 4Google Scholar
  29. Leonov GA, Kuznetsov NV, Vagaytsev VI (2011) Localization of hidden Chuasattractors. Phys Lett A 375(23):2230–2233MathSciNetCrossRefGoogle Scholar
  30. Liu H, Kadir A, Li Y (2016) Audio encryption scheme by confusion and diffusion based on multi-scroll chaotic system and one-time keys. Opt-Int J Light Electron Opt 127:7431–8CrossRefGoogle Scholar
  31. Njah AN, Sunday OD (2012) Generalization on the chaos control of 4-D chaotic systems using recursive backstepping nonlinear controller. Chaos Solitons Fractals 41(5):2371–2376CrossRefzbMATHGoogle Scholar
  32. Özkaynak F, Yavuz S (2013) Designing chaotic S-boxes based on time-delay chaotic system. Nonlinear Dyn 74(3):551–557MathSciNetCrossRefzbMATHGoogle Scholar
  33. Pano-Azucena AD, de Jesus R-MJ, Tlelo-Cuautle E, de Jesus Q-VA (2017) CArduino-based chaotic secure communication system using multi-directional multi-scroll chaotic oscillators. Nonlinear Dyn 87:2203–2217CrossRefGoogle Scholar
  34. Pershin YV, Di Ventra M (2008) Spin memristive systems: spin memory effects in semiconductor spintronics. Phys Rev B 78:113309/1–113309/4Google Scholar
  35. Pershin YV, La Fontaine S, Di Ventra M (2009) Memristive model of amoeba learning. Phys Rev E 80:021926/1–021926/6Google Scholar
  36. Pershin YV, Di Ventra M (2010) Experimental demonstration of associative memory with memristive neural networks. Neural Netw 23:881CrossRefGoogle Scholar
  37. Ponomarenko VI, Prokhorov MD, Karavaev AS, Kulminskiy DD (2013) An experimental digital communication scheme based on chaotic time-delay system. Nonlinear Dyn 74(4):1013–1020MathSciNetCrossRefGoogle Scholar
  38. Piper JR, Sprott JC (2010) Simple autonomous chaotic circuits. IEEE Trans Circuits Syst II: Express Briefs 57:730–734CrossRefGoogle Scholar
  39. Pham VT, Vaidyanathan S, Volos CK, Hoang TM, Van Yem V (2016) Dynamics, synchronization and SPICE implementation of a memristive system with hidden hyperchaotic attractor. In: Advances in chaos theory and intelligent control. Springer International Publishing, pp 35–52Google Scholar
  40. Sabarathinam S, Volos CK, Thamilmaran K (2016) Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator. Nonlinear Dyn 1–13Google Scholar
  41. Sahin S, Guzelic C (2013) A dynamical state feedback chaotification method with application on liquid mixing. J Circuits Syst Comput 22:1350059CrossRefGoogle Scholar
  42. Sapoff M, Oppenheim RM (1963) Theory and application of self-heated thermistors. In: Proceedings of the IEEE, vol 51, pp 1292–1305Google Scholar
  43. Shang Y, Fei W, Yu H (2012) Analysis and modeling of internal state variables for dynamic effects of nonvolatile memory devices. IEEE Trans Circuits Syst I: Regul Pap 59:1906–1918MathSciNetCrossRefGoogle Scholar
  44. Shin S, Kim K, Kang SM (2011) Memristor applications for programmable analog ICs. IEEE Trans Nanotechnol 10:266–274CrossRefGoogle Scholar
  45. Sundarapandian V (2010) Output regulation of the Lorenz attractor. Far East J Math Sci 42(2):289–299MathSciNetzbMATHGoogle Scholar
  46. Sundarapandian V (2013) Adaptive control and synchronization design for the Lu-Xiao chaotic system. Lect Notes Electr Eng 131:319–327CrossRefGoogle Scholar
  47. Strukov DB, Snider GS, Stewart GR, Williams RS (2008) The missing memristor found. Nature 453:80–83CrossRefGoogle Scholar
  48. Tlelo-Cuautle E, Rangel-Magdaleno J, Pano-Azucena A, Obeso-Rodelo P, Nuez-Perez JC (2015) CFPGA realization of multi-scroll chaotic oscillators. Commun Nonlinear Sci Numer Simul 27:66–80MathSciNetCrossRefGoogle Scholar
  49. Tlelo-Cuautle E, Pano-Azucena A, Rangel-Magdaleno J, Carbajal-Gomez V, Rodriguez-Gomez G (2016) Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs. Nonlinear Dyn 85:2143–57CrossRefGoogle Scholar
  50. Trejo-Guerra R, Tlelo-Cuautle E, Jimenez-Fuentes J, Snchez-Lpez C, Muoz-Pacheco J, Espinosa-Flores-Verdad G et al (2012) Integrated circuit generating 3-and 5-scroll attractors. Commun Nonlinear Sci Numer Simul 17:4328–4335MathSciNetCrossRefGoogle Scholar
  51. Trejo-Guerra R, Tlelo-Cuautle E, Jimnez-Fuentes M, Muoz-Pacheco J, Snchez-Lpez C (2013) Multiscroll floating gatebased integrated chaotic oscillator. Int J Circuit Theory Appl 41:831–843Google Scholar
  52. Vaidyanathan S (2011) Output regulation of Arneodo-Coullet chaotic system. Commun Comput Inf Sci 133:98–107Google Scholar
  53. Vaidyanathan S (2016) Analysis, control and synchronization of a novel 4-D highly hyperchaotic system with hidden attractors. In: Advances in chaos theory and intelligent control. Springer International Publishing, pp 529–552Google Scholar
  54. Vaidyanathan S (2012) Adaptive controller and syncrhonizer design for the Qi-Chen chaotic system. Advances in computer science and information technology. Comput Sci Eng 84:73–82Google Scholar
  55. Vaidyanathan S (2013) A ten-term novel 4-D hyperchaotic system with three quadratic non-linearities and its control. Int J Control Theory Appl 6(2):97–109MathSciNetGoogle Scholar
  56. Vaidyanathan S (2014) Qualitative analysis and control of an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. Int J Control Theory Appl 7:35–47Google Scholar
  57. Vaidyanathan S, Volos C (2012) Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Arch Control Sci 25(3):333–353MathSciNetGoogle Scholar
  58. Vaidyanathan S (2012) Global chaos control of hyperchaotic Liu system via sliding control method. Int J Control Theory Appl 5(2):117–123MathSciNetGoogle Scholar
  59. Vaidyanathan S (2015) Adaptive control of Rikitake two-disk dynamo system. Int J ChemTech Res 8(8):121–133MathSciNetGoogle Scholar
  60. Ventra MD, Pershin YV, Chua LO (2009) Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc IEEE 97(10):1717–1724CrossRefGoogle Scholar
  61. Vincent UE, Njah AN, Laoye JA (2007) Controlling chaos and deterministic directed transport in inertia ratchets using backstepping control. Phys D 231(2):130–136MathSciNetCrossRefzbMATHGoogle Scholar
  62. Volos CK, Kyprianidis IM, Stouboulos IN (2011) The memristor as an electric synapse synchronization phenomena In: Proceedings of the International Conference on DSP2011 (Confu, Greece), pp 1–6Google Scholar
  63. Volos CK, Kyprianidis IM, Stouboulos IN (2012) A chaotic path planning generator for autonomous mobile robots. Robot Auton Syst 60:651–656CrossRefGoogle Scholar
  64. Volos CK, Kyprianidis IM, Stouboulos IN (2013) Image encryption process based on chaotic synchronization phenomena. Signal Process 93:1328–40CrossRefGoogle Scholar
  65. Wang L, Zhang C, Chen L, Lai J, Tong J (2012) A novel memristor-based rSRAM structure for multiple-bit upsets immunity. IEICE Electron Express 9:861–867CrossRefGoogle Scholar
  66. Wang B, Xu H, Yang P, Liu L, Li J (2015) Target detection and ranging through lossy media using chaotic radar. Entropy 17:2082–93CrossRefGoogle Scholar
  67. Wei Z, Moroz I, Liu A (2014) Degenerate Hopf bifurcations, hidden attractors, and control in the extended Sprott E system with only one stable equilibrium. Turkish J Math 38(4):672–687MathSciNetCrossRefzbMATHGoogle Scholar
  68. Wu AL, Zhang JN, Zeng ZG (2011) Dynamical behaviors of a class of memristor-based Hopfield networks. TPhys Lett A 375:1661–1665CrossRefzbMATHGoogle Scholar
  69. Wu H, Bao B, Liu Z, Xu Q, Jiang P (2016) Chaotic and periodic bursting phenomena in a memristive Wien-bridge oscillator. Nonlinear Dyn 83(1–2):893–903MathSciNetCrossRefGoogle Scholar
  70. Wu X, He Y, Yu W, Yin B (2015) A new chaotic attractor and its synchronization implementation. Circuits Syst Signal Process 34:1747–1768CrossRefGoogle Scholar
  71. Yang JJ, Strukov DB, Stewart DR (2013) Memristive devices for computing. Nat Nanotechnol 8:13–24CrossRefGoogle Scholar
  72. Yalcin ME, Suykens JA, Vandewalle J (2004) True random bit generation from a double-scroll attractor. EEE Trans Circuits Syst I: Regul Pap 51:1395–1404MathSciNetCrossRefzbMATHGoogle Scholar
  73. Ye G, Wong KW (2013) An image encryption scheme based on time-delay and hyperchaotic system. Nonlinear Dyn 71(1–2):259–267MathSciNetCrossRefGoogle Scholar
  74. Zhao YB, Tse CK, Feng JC, Guo YC (2013) Application of memristor-based controller for loop filter design in charge-pump phase-locked loop. Circuits Syst Signal Process 32:1013–1023MathSciNetCrossRefGoogle Scholar
  75. Zhou W-j, Wang Z-p, Wu M-w, Zheng W-h, Weng J-f (2015) Dynamics analysis and circuit implementation of a new three-dimensional chaotic system. Opt-Int J Light Electron Opt 126:765–768Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Dimitrios A. Prousalis
    • 1
  • Christos K. Volos
    • 1
  • Viet-Thanh Pham
    • 2
  • Ioannis N. Stouboulos
    • 1
  • Ioannis M. Kyprianidis
    • 1
  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.School of Electronics and TelecommunicationsHanoi University of Science and TechnologyHanoiVietnam

Personalised recommendations