The Living Soil: Biodiversity and Functions

  • Olaf SchmidtEmail author
  • Tom Bolger
  • Rachel Creamer
  • Fiona Brennan
  • Alan D. W. Dobson
Part of the World Soils Book Series book series (WSBS)


Soil biodiversity encompasses an enormous array of life on the planet. Soil organisms are essential for most processes and functions in the soil. Soil biological knowledge is critical for understanding functions such as nutrient supply to plants, carbon sequestration and greenhouse gas emissions, all of which are key to meeting the global challenges of food security and climate change mitigation. Soil microorganisms include a wide array of bacterial, archaeal and eukaryotic taxa. Microbes are extremely diverse and abundant, with up to 10 billion microorganisms predicted in a single gram of soil. Nematodes provide a good case study of a soil faunal group that encompasses all feeding habits within their own taxonomic group. Their different feeding habits mean that nematodes provide many and different connections in soil food webs. Microarthropods are discussed, as representing a well-studied soil animal group in Ireland in terms of their community ecology and biogeography, with several species of the Mesostigmata identified. Knowledge of larger animals such as earthworms is more complete, with 27 species recorded from Ireland.


Soil biology Soil ecology Soil organisms Soil biodiversity 


  1. Arroyo J, O’Connell T, Bolger T (2017) Oribatid mites (Acari: Oribatida) recorded from Ireland: Catalogue, historical records, species habitats and geographical distribution, combinations, variations and synonyms. Zootaxa 4328:1
  2. Bardgett R (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford, p 242CrossRefGoogle Scholar
  3. Blackith RE, Good JA (1991) Protura in Ireland. Bull Irish Biogeograph Soc 14:84–89Google Scholar
  4. Bolger T, Curry JP (1980) Effects of cattle slurry on soil arthropods in grassland. Pedobiologia 20:246–253Google Scholar
  5. Bolger T, Curry JP (1984) Influences of pig slurry on soil microarthropods in grassland. Rev Écol Biol Sol 21:269–281Google Scholar
  6. Bolger T, Schmidt O, Purvis G, Curry JP (2002) The biodiversity, function and management of soil invertebrate populations. In: Convery F, Feehan J (eds) Achievement and Challenge: Rio + 10 and Ireland. University College Dublin, The Environmental Institute, pp 2–10Google Scholar
  7. Bouffaud ML, Creamer RE, Stone D, Plassart P, van Tuinen D, Lemanceau P, Wipf D, Redecker D (2016) Indicator species and co-occurrence in communities of arbuscular mycorrhizal fungi at the European scale. Soil Biol Biochem 103:464–470CrossRefGoogle Scholar
  8. Brennan FP, Abram F, Chinalia FA, Richards KG, O’Flaherty V (2010a) Characterization of environmentally persistent Escherichia coli isolates leached from an Irish soil. Appl Environ Microbiol 76:2175–2180Google Scholar
  9. Brennan FP, O’Flaherty V, Kramers G, Grant J, Richards KG (2010b) Long-term persistence and leaching of Escherichia coli in temperate maritime soils. Appl Environ Microbiol 76:1449–1455Google Scholar
  10. Brennan FP, Moynihan E, Griffiths BS, Hillier S, Owen J, Pendlowski H, Avery LM (2014) Clay mineral type effect on bacterial enteropathogen survival in soil. Sci Total Env 468–469:302–305CrossRefGoogle Scholar
  11. Cawley M (2009) New records for Irish false-scorpions (Arachnida: Pseudoscorpiones), also incorporating a county checklist. Bull Irish Biogeograph Soc 33:99–114Google Scholar
  12. Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Elsevier, Amsterdam, p 386Google Scholar
  13. Courtney R, Feeney E, O’Grady A (2014) An ecological assessment of rehabilitated bauxite residue. Ecol Engineer 73:373–379CrossRefGoogle Scholar
  14. Creamer RE, Hannula SE, Leeuwen JPV, Stone D, Rutgers M, Schmelz RM, de Ruiter PC, Hendriksen NB, Bolger T, Bouffaud ML, Buee M, Carvalho F, Costa D, Dirilgen T, Francisco R, Griffiths BS, Griffiths R, Martin F, da Silva PM, Mendes S, Morais PV, Pereira C, Philippot L, Plassart P, Redecker D, Römbke J, Sousa JP, Wouterse M, Lemanceau P (2016) Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Appl Soil Ecol 97:112–124CrossRefGoogle Scholar
  15. Curry JP (1969) The qualitative and quantitative composition of the fauna of an old grassland site at Celbridge, Co. Kildare. Soil Biol Biochem 1:219–227CrossRefGoogle Scholar
  16. Curry JP (1994) Grassland invertebrates: ecology, influence on soil fertility and effects on plant growth. Chapman & Hall, London. 437 ppGoogle Scholar
  17. Curry JP, Schmidt O (2006) Long-term establishment of earthworm populations in grassland on reclaimed industrial cutaway peatland in Ireland. Suo: Mires Peat 57:65–70Google Scholar
  18. Curry JP, Byrne D, Schmidt O (2002) Intensive cultivation can drastically reduce earthworm populations in arable land. Eur J Soil Biol 38:127–130CrossRefGoogle Scholar
  19. Curry JP, Doherty P, Purvis P, Schmidt O (2008) Relationships between earthworm populations and management intensity in cattle-grazed pastures in Ireland. Appl Soil Ecol 39:58–64CrossRefGoogle Scholar
  20. Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509Google Scholar
  21. Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirch PR, Vogel TM (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77:1315–1324CrossRefGoogle Scholar
  22. Dickinson CH, Dooley M (1969) Fungi associated with Irish peat bogs. Proc R Irish Acad B: Biol Geol Chem Sci 68:109–135Google Scholar
  23. Dirilgen T, Arroyo J, Dimmers WJ, Faber J, Stone D, Martins da Silva P, Cavalho F, Schmelz R, Griffiths BS, Francisco R, Creamer RE, Sousa JP, Bolger T (2016) Mite community composition across a European transect and its relationships to variation in other components of soil biodiversity. Appl Soil Ecol 97:86–97CrossRefGoogle Scholar
  24. Dix E (2017) The role of microarthropods in carbon and nitrogen dynamics in grassland soils. Unpublished Ph.D. thesis, University College Dublin, 266 ppGoogle Scholar
  25. Ernfors M, Brennan F, Richards K, McGeough K, Griffiths BS, Laughlin RJ, Watson CJ, Philippot L, Grant J, Minet E, Moynihan E, Mueller C (2014) The nitrification inhibitor dicyandiamide increases mineralization-immobilization turnover in slurry amended grassland soil. J Agr Sci 152:137–149CrossRefGoogle Scholar
  26. Evans GO (1982) Observations of the genus Protogamasellus with a description of a new species. Acarologia 23:303–313Google Scholar
  27. Fox A, Kwapinski W, Griffiths BS, Schmalenberger A (2014) The role of sulfur—and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Lolium perenne. FEMS Microbiol Ecol 90:78–91Google Scholar
  28. Fox A, Gahan J, Ikoyi I, Kwapinski W, O’Sullivan O, Cotter PD, Schmalenberger A (2016) Miscanthus biochar promotes growth of spring barley and shifts bacterial community structures including phosphorus and sulfur mobilizing bacteria. Pedobiologia 59:195–202CrossRefGoogle Scholar
  29. Gahan J, Schmalenberger A (2014) The role of bacteria and mycorrhiza in plant sulfur supply. Front Plant Sci 5:723. Scholar
  30. Gahan J, Schmalenberger A (2015) Arbuscular mycorrhizal hyphae in grassland select for a diverse and abundant hyphospheric bacterial community involved in sulfonate desulfurization. Appl Soil Ecol 89:113–121CrossRefGoogle Scholar
  31. Griffin CT, Moore JF, Downes MJ (1991) Occurrence of insect parasitic nematodes (Steinernematidae, Heterorhabditidae) in the Republic of Ireland. Nematologica 37:92–100CrossRefGoogle Scholar
  32. Halbert JN (1915) Clare Island survey. 39. Acaridina ii. Terrestrial and marine Acarina. Proc R Irish Acad 31(39): 45–136Google Scholar
  33. Heneghan L, Bolger T (1996) Effects of acid rain components on soil microarthropods: a field manipulation. Pedobiologia 40:413–438Google Scholar
  34. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM, Amundson R, Thomas BC, Banfield JF (2016) A new view of the tree of life. Nature Microbiol 1:16048. Scholar
  35. Jeffery S, Gardi C, Jones A, Montanarella L, Marmo L, Miko L, Ritz K, Pérès G, Römbke J, van der Putten WH (eds) (2010) European atlas of soil biodiversity. European Commission, Publications Office of the European Union, Luxembourg, 128 ppGoogle Scholar
  36. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386CrossRefGoogle Scholar
  37. Jones CM, Spor A, Brennan FP, Breuil MC, Bru D, Lemanceau P, Griffiths B, Hallin S, Philippot L (2014) Recently identified microbial guild mediates soil N2O sink capacity. Nature Clim Change 4:801–805CrossRefGoogle Scholar
  38. Keith AM, Griffin CT, Schmidt O (2009) Predatory soil nematodes (Mononchida) in major land-use types across Ireland. J Natural Hist 43:2571–2577CrossRefGoogle Scholar
  39. Keith AM, Boots B, Hazard C, Niechoj R, Arroyo J, Bending GD, Bolger T, Breen J, Clipson N, Doohan FM, Griffin CT, Schmidt O (2012) Cross-taxa congruence, indicators and environmental drivers in soils under agricultural and extensive land management. Eur J Soil Biol 49:55–62CrossRefGoogle Scholar
  40. Keith AM, Schmidt O, McMahon BJ (2016) Soil stewardship as a nexus between Ecosystem Services and One Health. Ecosyst Serv 17:40–42CrossRefGoogle Scholar
  41. Knietch A, Waschkowitz S, Bowien A, Henne A, Daniel R (2003) Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on E. coli. J Microbiol Biotechnol 5:46–56Google Scholar
  42. Legg G, O’Connor JP (1997) A review of the Irish pseudoscorpions (Arachnida: Pseudoscorpiones). Bull Irish Biogeograph Soc 20:105–117Google Scholar
  43. Lillis L, Doyle E, Clipson N (2009) Comparison of DNA- and RNA-based bacterial community structures in soil exposed to 2,4-dichlorophenol. J Appl Microbiol 107:1883–1893CrossRefGoogle Scholar
  44. Luxton M (1998) The oribatid and parasitiform mites of Ireland, with particular reference to the work of J. N. Halbert (1872–1948). Bull Irish Biogeograph Soc 22:1–72Google Scholar
  45. Massey PA, Creamer RE, Whelan MJ, Ritz K (2016) Insensitivity of soil biological communities to phosphorus fertilization in intensively managed grassland systems. Grass Forage Sci 71:139–152CrossRefGoogle Scholar
  46. Melody C, Schmidt O (2012) Northward range extension of an endemic soil decomposer with a distinct trophic position. Biol Lett 8:956–959CrossRefGoogle Scholar
  47. Melody C, Griffiths BS, Dyckmans J, Schmidt O (2016) Stable isotope analysis (δ13C and δ15N) of soil nematodes from four different feeding groups. PeerJ 4:e2372. Scholar
  48. Moore JF (1977) Studies on occurrence and control of Longidorus and Xiphinema nematodes. Irish J Agr Res 16:301–310Google Scholar
  49. Morriën E, Hannula SE, Snoek LB, Helmsing NR, Zweers H, de Hollander M, Soto RL, Bouffaud ML, Buée M, Dimmers W, Duyts H, Geisen S, Girlanda M, Griffiths RI, Jørgensen HB, Jensen J, Plassart P, Redecker D, Schmelz RM, Schmidt O, Thomson BC, Tisserant E, Uroz S, Winding A, Bailey MJ, Bonkowski M, Faber JH, Martin F, Lemanceau P, de Boer W, van Veen JA, van der Putten WH (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Commun 8:14349. Scholar
  50. Moynihan E, Richards K, Ritz K, Tyrrel S, Brennan F (2013) The impact of soil type, biology and temperature on the environmental persistence of non-toxigenic E. coli O157. Biol Env Proc R Irish Acad 113B:41–46Google Scholar
  51. Moynihan EL, Richards KG, Brennan FP, Tyrrel SF, Ritz K (2015) Enteropathogen survival in soil from different land-uses is predominantly regulated by microbial community composition. Appl Soil Ecol 89:76–84CrossRefGoogle Scholar
  52. Muldowney J, Schmidt O (2002) Allolobophora cupulifera Tétry (Oligochaeta: Lumbricidae) in Ireland: first records for the British Isles. Megadrilogica 9:29–32Google Scholar
  53. Muldowney J, Curry JP, O’Keeffe J, Schmidt O (2003) Relationships between earthworm populations, grassland management and badger density in County Kilkenny, Ireland. Pedobiologia 47:913–919Google Scholar
  54. Neher DA (2010) Ecology of plant and free-living nematodes in natural and agricultural soil. Annu Rev Rev Phytopathol 48:371–394CrossRefGoogle Scholar
  55. O’Mahony M, Henneberger R, Selvin J, Kennedy J, Doohan F, Marchesi JR, Dobson ADW (2015) Inhibition of the growth of Bacillus subtilis DSM10 by a newly discovered antibacterial protein from the soil metagenome. Bioengineered 6:89–98Google Scholar
  56. Orgiazzi A, Bardgett RD, Barrios E, Behan-Pelletier V, Briones MJI, Chotte JL, De Deyn GB, Eggleton P, Fierer N, Fraser T, Hedlund K, Jeffery S, Johnson NC, Jones A, Kandeler E, Kaneko N, Lavelle P, Lemanceau P, Miko L, Montanarella L, Moreira FMS, Ramirez KS, Scheu S, Singh BK, Six J, van der Putten WH, Wall DH (eds) (2016) Global soil biodiversity atlas. European Commission, Publications Office of the European Union, Luxembourg. 176 ppGoogle Scholar
  57. Randall K (2016) The microbial ecology of the soil–plant interface. Unpublished Ph.D. thesis, University College DublinGoogle Scholar
  58. Rutgers M, Orgiazzi A, Gardi C, Römbke J, Jänsch S, Keith AM, Neilson R, Boag B, Schmidt O, Murchie AK, Blackshaw RP, Pérès G, Cluzeau D, Guernion M, Briones MJI, Rodeiro J, Piñeiro R, Díaz-Cosin DJ, Sousa JP, Suhadolc M, Kos I, Krogh PH, Faber JH, Mulder C, Bogte JJ, van Wijnen HJ, Schouten AJ, de Zwart D (2016) Mapping earthworm communities in Europe. Appl Soil Ecol 97:98–111CrossRefGoogle Scholar
  59. Samad MS, Bakken LR, Nadeem S, Clough TJ, de Klein CAM, Richards KG, Lanigan GJ, Morales SE (2016) High-resolution denitrification kinetics in pasture soils link N2O emissions to pH, and denitrification to C mineralization. PLoS ONE 11:e0151713. Scholar
  60. Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4:519–537CrossRefGoogle Scholar
  61. Sawulski P, Boots B, Clipson N, Doyle E (2015) Differential degradation of polycyclic aromatic hydrocarbon mixtures by indigenous microbial assemblages in soil. Lett Appl Microbiol 61:199–207CrossRefGoogle Scholar
  62. Schloss PD, Handlesman J (2003) Biotechnological prospects from metagenomics. Curr Opinion Biotechnol 26:1135–1145Google Scholar
  63. Schmidt O, Curry JP (1999) Effects of earthworms on biomass production, nitrogen allocation and nitrogen transfer in wheat–clover intercropping model systems. Plant Soil 214:187–198CrossRefGoogle Scholar
  64. Schmidt O, Curry JP, Hackett RA, Purvis G, Clements RO (2001) Earthworm communities in conventional wheat monocropping and low-input wheat–clover intercropping systems. Ann Appl Biol 138:377–388CrossRefGoogle Scholar
  65. Schmidt O, Dyckmans J, Schrader S (2016) Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates. Biol Lett 12:20150646. Scholar
  66. Stromberger ME, Keith AM, Schmidt O (2012) Distinct microbial and faunal communities and translocated carbon in Lumbricus terrestris drilospheres. Soil Biol Biochem 46:155–162Google Scholar
  67. Strous M, Fuerts JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400:446–449CrossRefGoogle Scholar
  68. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley and Los Angeles, p 372Google Scholar
  69. Tan H, Mooij MJ, Barret M, Hegarty PM, Dobson ADW, O’Gara F (2014) Identification of novel phytase genes from an agricultural soil-derived metagenome. J Microbiol Biotechnol 24:113–118CrossRefGoogle Scholar
  70. Thakuria D, Schmidt O, Finan D, Egan D, Doohan FM (2010) Gut wall bacteria of earthworms: a natural selection process. ISME J 4:357–366CrossRefGoogle Scholar
  71. Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Env Microbiol 7:1985–1995CrossRefGoogle Scholar
  72. van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, op den Camp HJM, Kartal B, Jetten MSM, Lücker S (2015). Complete nitrification by a single microorganism. Nature 528:555–559Google Scholar
  73. Vervoort MTW, Vonk JA, Mooijman PJW, van den Elsen SJJ, van Megen HHB, Veenhuizen P, Landeweert R, Bakker J, Mulder C, Helder J (2012) SSU ribosomal DNA-based monitoring of nematode assemblages reveals distinct seasonal fluctuations within evolutionary heterogeneous feeding guilds. PLoS ONE 7:e47555. Scholar
  74. Yeates GW, Ferris H, Moens T, van der Putten WH (2009) The role of nematodes in ecosystems. In: Wilson JW, Kakouli-Duarte T (eds) Nematodes as Environmental Indicators. CAB International, London, pp 1–44Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Olaf Schmidt
    • 1
    Email author
  • Tom Bolger
    • 2
  • Rachel Creamer
    • 3
  • Fiona Brennan
    • 4
  • Alan D. W. Dobson
    • 5
  1. 1.UCD School of Agriculture and Food ScienceUniversity College DublinDublin 4Ireland
  2. 2.UCD School of Biology and Environmental ScienceUniversity College DublinDublin 4Ireland
  3. 3.Wageningen University and Research Atlas—Wageningen CampusWageningenThe Netherlands
  4. 4.Teagasc Environment, Soils and Land-Use DepartmentJohnstown CastleIreland
  5. 5.School of Microbiology and Environmental Research InstituteUniversity College CorkCorkIreland

Personalised recommendations