Skip to main content

A Parallel Construction of Vertex-Disjoint Spanning Trees with Optimal Heights in Star Networks

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10627)

Abstract

Constructing vertex-disjoint spanning trees (VDSTs for short) of a given network is an important issue in the research of network fault-tolerance and security. The star network was proposed as an attractive interconnection network model for competing with n-cube. Accordingly, Rescigno in [Inform. Sci. 137 (2001) 259–276] proposed an algorithm to construct \(n-1\) VDSTs rooted at a common node in an n-dimensional star network \(S_n\). In this paper, we point out that there exists a flaw in Rescigno’s algorithm, and thus the spanning trees constructed by this algorithm may not be vertex-disjoint. As a result, a correct scheme of constructing \(n-1\) VDSTs on \(S_n\) is presented. Moreover, based on the reversing rule of building certain paths of VDSTs in the amendatory scheme, we propose a new algorithm to construct \(n-1\) VDSTs with optimal heights on \(S_n\). In particular, the proposed algorithm is more efficient and can easily be implemented in parallel.

Keywords

  • Vertex-disjoint spanning trees
  • Interconnection networks
  • Star networks
  • Fault-tolerance
  • Network security

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-71150-8_4
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-71150-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. Akers, S.B., Krishnamurty, B.: A group theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 28, 555–566 (1989)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Akers, S.B., Harel, D., Krishnamurty, B.: The star graph: an attractive alternative to the \(n\)-cube. In: Proceedings of the International Conference on Parallel Processing (ICPP 1987), University Park, pp. 393–400 (1987)

    Google Scholar 

  3. Akl, S.G., Qiu, K., Stojmenović, I.: Fundamental algorithms for the star and pancake interconnection networks with applications to computational geometry. Networks 23, 215–226 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Akl, S.G., Wolff, T.: Efficient sorting on the star graph interconnection network. Telcom. Syst. 10, 3–20 (1998)

    CrossRef  Google Scholar 

  5. Bao, F., Funyu, Y., Hamada, Y., Igarashi, Y.: Reliable broadcasting and secure distributing in channel networks. In: Proceedings of 3rd International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN 1997), Taipei, pp. 472–478 (1997)

    Google Scholar 

  6. Chang, J.-M., Yang, T.-J., Yang, J.-S.: A parallel algorithm for constructing independent spanning trees in twisted cubes. Discrete Appl. Math. 219, 74–82 (2017)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Chen, C.-C., Chen, J.: Optimal parallel routing in star networks. IEEE Trans. Comput. 46, 1293–1303 (1997)

    CrossRef  MathSciNet  Google Scholar 

  8. Day, K., Tripathi, A.: A comparative study of topologies properties of hypercubes and star networks. IEEE Trans. Parallel Distrib. Syst. 5, 31–38 (1994)

    CrossRef  Google Scholar 

  9. Fragopoulou, P., Akl, S.G.: A parallel algorithm for computing Fourier transforms on the star graph. IEEE Trans. Parallel Distrib. Syst. 5, 525–531 (1994)

    CrossRef  Google Scholar 

  10. Fragopoulou, P., Akl, S.G.: Optimal communication algorithms on star graphs using spanning tree constructions. J. Parallel Distrib. Comput. 24, 55–71 (1995)

    CrossRef  Google Scholar 

  11. Fragopoulou, P., Akl, S.G.: Edge-disjoint spanning trees on the star network with applications to fault tolerance. IEEE Trans. Comput. 45, 174–185 (1996)

    CrossRef  MATH  Google Scholar 

  12. Hasunuma, T., Nagamochi, H.: Independent spanning trees with small depths in iterated line digraphs. Discrete Appl. Math. 110, 189–211 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  13. Itai, A., Rodeh, M.: The multi-tree approach to reliability in distributed networks. Inform. Comput. 79, 43–59 (1988)

    CrossRef  MATH  MathSciNet  Google Scholar 

  14. Qiu, K., Akl, S.G., Meijer, H.: On some properties and algorithms for the star and pancake interconnection networks. J. Parallel Distrib. Comput. 22, 16–25 (1994)

    CrossRef  Google Scholar 

  15. Rescigno, A.A.: Vertex-disjoint spanning trees of the star network with applications to fault-tolerance and security. Inform. Sci. 137, 259–276 (2001)

    CrossRef  MATH  MathSciNet  Google Scholar 

  16. Sur, S., Srimani, P.K.: Topological properties of star graph. Comput. Math. Appl. 25, 87–98 (1993)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Yang, J.-S., Chan, H.-C., Chang, J.-M.: Broadcasting secure messages via optimal independent spanning trees in folded hypercubes. Discrete Appl. Math. 159, 1254–1263 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  18. Yang, J.-S., Chang, J.-M., Tang, S.-M., Wang, Y.-L.: Reducing the height of independent spanning trees in chordal rings. IEEE Trans. Parallel Distrib. Syst. 18, 644–657 (2007)

    CrossRef  Google Scholar 

  19. Yang, J.-S., Luo, S.-S., Chang, J.-M.: Pruning longer branches of independent spanning trees on folded hyper-stars. Comput. J. 58, 2979–2981 (2015)

    Google Scholar 

  20. Yang, J.-S., Wu, M.-R., Chang, J.-M., Chang, Y.-H.: A fully parallelized scheme of constructing independent spanning trees on Möbius cubes. J. Supercomput. 71, 952–965 (2015)

    CrossRef  Google Scholar 

Download references

Acknowledgments

This research was partially supported by MOST grants 104-2221-E-141-002-MY3 (Jou-Ming Chang), 105-2221-E-131-027 (Kung-Jui Pai), 106-2221-E-141-001 (Jinn-Shyong Yang) and 104-2221-E-262-005 (Ro-Yu Wu) from the Ministry of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jou-Ming Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kao, SS., Chang, JM., Pai, KJ., Yang, JS., Tang, SM., Wu, RY. (2017). A Parallel Construction of Vertex-Disjoint Spanning Trees with Optimal Heights in Star Networks. In: Gao, X., Du, H., Han, M. (eds) Combinatorial Optimization and Applications. COCOA 2017. Lecture Notes in Computer Science(), vol 10627. Springer, Cham. https://doi.org/10.1007/978-3-319-71150-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71150-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71149-2

  • Online ISBN: 978-3-319-71150-8

  • eBook Packages: Computer ScienceComputer Science (R0)