Skip to main content

Parameter Search for a Small Swarm of AUVs Using Particle Swarm Optimisation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10630))

Abstract

The development of a low cost and intelligent swarm of autonomous underwater vehicles (AUVs) is the long term goal of this research. Such a swarm of AUVs could be used, for example, for locating submarine sources of interest, such as dumped radioactive waste or ammunition. This is a difficult problem for direct search algorithms, because in large areas of the search space, gradient information is not available. The overall search strategy used in the work is based on particle swarm optimisation (PSO). The number of AUVs here is small due to costs and availability. The performance of PSO depends on the right choice of control parameters. Therefore this paper presents an empirical study of the effects of different search parameter settings on the performance of PSO, used with a swarm of three AUVs in a dynamic environment. A simulation of submarine groundwater discharge, based on Cellular Automata, is used as a dynamic test environment. It was shown in this research that PSO in this configuration is robust against control parameter settings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zielinski, O., Busch, J.A., Cembella, A.D., Daly, K.L., Engelbrektsson, J., Hannides, A.K., Schmidt, H.: Detecting marine hazardous substances and organisms: sensors for pollutants, toxins and pathogens. Ocean Sci. 5, 329–349 (2009)

    Article  Google Scholar 

  2. Zielinski, O.: Airborne pollution surveillance using multi-sensor systems – new sensors and algorithms for improved oil spill detection and polluter identification. Sea Technol. 44(10), 28–32 (2003)

    Google Scholar 

  3. Moore, W.S.: The effect of submarine groundwater discharge on the ocean. Annu. Rev. Mar. Sci. 2, 59–88 (2010)

    Article  Google Scholar 

  4. Nelson, C.E., Donahue, M.J., Dulaiova, H., Goldberg, S.J., La Valle, F.F., Lubarsky, K., Miyano, J., Richardson, C., Silbiger, N.J., Thomas, F.I.: Fluorescent dissolved organic matter as a multivariate biogeochemical tracer of submarine groundwater discharge in coral reef ecosystems. Mar. Chem. 177, 232–243 (2015)

    Article  Google Scholar 

  5. Beck, M., Reckhardt, A., Amelsberg, J., Bartholomä, A., Brumsack, H.J., Cypionka, H., Dittmar, T., Engelen, B., Greskowiak, J., Hillebrand, H., Holtappels, M., Neuholz, R., Köster, J., Kuypers, M.M.M., Massmann, G., Meier, D., Niggemann, J., Paffrath, R., Pahnke, K., Rovo, S., Striebel, M., Vandieken, V., Wehrmann, A., Zielinski, O.: The drivers of biogeochemistry in beach ecosystems: a crossshore transect from the dunes to the low water line. Mar. Chem. 190, 35–50 (2017)

    Article  Google Scholar 

  6. Evans, T.B., Wilson, A.M.: Groundwater transport and the freshwater–saltwater interface below sandy beaches. J. Hydrol. 538, 563–573 (2016)

    Article  Google Scholar 

  7. Nolle, L.: On a search strategy for collaborating autonomous underwater vehicles. In: Mendel 2015, 21st International Conference on Soft Computing, Brno, CZ, pp. 159–164 (2015)

    Google Scholar 

  8. Tholen, C., Nolle, L., Werner, J.: On the influence of localisation and communication error on the behaviour of a swarm of autonomous underwater vehicles. In: Mendel 2017, 23rd International Conference on Soft Computing, Brno, CZ (2017, to appear)

    Google Scholar 

  9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942−1948 (1995)

    Google Scholar 

  10. Bansal, J.C., Singh, P.K., Saraswat, M., Verma, A., Jadon, S.S., Abraham, A.: Inertia weight strategies in particle swarm optimization. In: Third World Congress on Nature and Biologically Inspired Computing, 19–21 October, Salamanca, Spain, pp. 633−640 (2011)

    Google Scholar 

  11. Wolfram, S.: Universality and complexity in cellular automata. Physica D: Nonlinear Phenom. 10(1–2), 1–35 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tholen, C., Nolle, L., Zielinski, O.: On the effect of neighborhood schemes and cell shape on the behaviour of cellular automata applied to the simulation of submarine groundwater discharge. In: 31th European Conference on Modelling and Simulation, ECMS 2017, pp. 255–261 (2017)

    Google Scholar 

  13. Nolle, L., Thormählen, H., Musa, H.: Simulation of submarine groundwater discharge of dissolved organic matter using cellular automata. In: 30st European Conference on Modelling and Simulation, ECMS 2016, pp. 265–269 (2016)

    Google Scholar 

  14. Jiménez, A., Posadas, A.M., Marfil, J.M.: A probabilistic seismic hazard model based on cellular automata and information theory. Nonlinear Process. Geophys. 12(3), 381–396 (2005)

    Article  Google Scholar 

  15. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)

    Google Scholar 

  16. Faiçal, B.S., Pessin, G., Filho, G.P.R., Carvalho, A.C.P.L.F., Gomes, P.H., Ueyama, J.: Fine-tuning of UAV control rules for spraying pesticides on crop fields: an approach for dynamic environments. Int. J. Artif. Intell. Tools 25(1), 1660003-1–160003-19 (2016)

    Article  Google Scholar 

  17. Družeta, S., Ivić, S.: Examination of benefits of personal fitness improvement dependent inertia for particle swarm optimization. Soft Comput. 21(12), 3387–3400 (2017)

    Article  Google Scholar 

  18. Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: 2000 Congress on Evolutionary Computation, vol. 1, pp. 84–88 (2000)

    Google Scholar 

  19. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, pp. 120–127 (2007)

    Google Scholar 

  20. Edwards, A.M., Phillips, R.A., Watkins, N.W., Freeman, M.P., Murphy, E.J., Afanasyev, V., Buldyrev, S.V., da Luz, M.G.E., Raposo, E.P., Stanley, H.E., Viswanathan, G.M.: Revisiting levy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449, 1044–1049 (2007)

    Article  Google Scholar 

  21. Subha, R., Himavathi, S.: Acclerated particle swarm optimization algorithm for maximum power point tracking in partially shaded PV systems. In: 3rd International Conference on Electrical Energy Systems, pp. 232–236 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Tholen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tholen, C., Nolle, L. (2017). Parameter Search for a Small Swarm of AUVs Using Particle Swarm Optimisation. In: Bramer, M., Petridis, M. (eds) Artificial Intelligence XXXIV. SGAI 2017. Lecture Notes in Computer Science(), vol 10630. Springer, Cham. https://doi.org/10.1007/978-3-319-71078-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71078-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71077-8

  • Online ISBN: 978-3-319-71078-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics