Advertisement

Towards the Integration of Prescription Analytics into Health Policy and General Practice

  • Brian Cleland
  • Jonathan Wallace
  • Raymond Bond
  • Michaela Black
  • Maurice Mulvenna
  • Deborah Rankin
  • Austin Tanney
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10630)

Abstract

The phenomenon of big data and data analytics is impacting many sectors, including healthcare. Practical examples of the application of big data to health policy and health service delivery remain scarce, however. In this paper, which summarises findings from an ongoing research project, we explore the potential for applying data analytics and anomaly detection to open data in order to support improved policy design and to enable better clinical decisions in primary care. The policy context of mental health in Northern Ireland is described, and its importance as a public health issue is explained. Based on previous work, it is proposed that depression prevalence is a mediating factor between economic deprivation and antidepressant prescribing. This hypothesis is tested by analysing a variety of open datasets. The methodology is described, including datasets used, the data processing pipeline, and analysis tools. The results are presented, identifying correlations between the three main variables, and highlighting anomalies in the data. The findings are discussed and implications and opportunities for further research are described.

Keywords

Health policy Data analytics Big data Prescribing Prevalence Deprivation 

References

  1. 1.
    Andreu-Perez, J., Poon, C.C.Y., Merrifield, R.D., Wong, S.T.C., Yang, G.Z.: Big data for health. IEEE J. Biomed. Health Inform. 19, 1193–1208 (2015).  https://doi.org/10.1109/JBHI.2015.2450362 CrossRefGoogle Scholar
  2. 2.
    Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Mining Knowl. Discov. 29(3), 626–688 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bamford Review of Mental Health and Learning Disability: A Vision of a Comprehensive Child and Adolescent Mental Health Service (CAMHs). DHSSPS, Belfast (2006)Google Scholar
  4. 4.
    Betts, J., Thompson, J.: Mental Health in Northern Ireland: Overview, Strategies, Policies, Care Pathways, CAMHS and Barriers to Accessing Services (2017)Google Scholar
  5. 5.
    Birkhead, G.S., Klompas, M., Shah, N.R.: Uses of electronic health records for public health surveillance to advance public health. Annu. Rev. Public Health 36, 345–359 (2015).  https://doi.org/10.1146/annurev-publhealth-031914-122747 CrossRefGoogle Scholar
  6. 6.
    Bunting, B.P., Murphy, S.D., O’Neill, S.M., Ferry, F.R.: Lifetime prevalence of mental health disorders and delay in treatment following initial onset: evidence from the Northern Ireland Study of Health and Stress. Psychol. Med. 42(8), 1727–1739 (2011).  https://doi.org/10.1017/S0033291711002510 CrossRefGoogle Scholar
  7. 7.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41, 1 (2009).  https://doi.org/10.1145/1541880.1541882 CrossRefGoogle Scholar
  8. 8.
    Chini, F., Pezzotti, P., Orzella, L., Borgia, P., Guasticchi, G.: Can we use the pharmacy data to estimate the prevalence of chronic conditions? A comparison of multiple data sources. BMC Public Health 11, 688 (2011)CrossRefGoogle Scholar
  9. 9.
    Cossman, R.E., Cossman, J.S., James, W.L., Blanchard, T., Thomas, R., Pol, L.G., Cosby, A.G.: Correlating pharmaceutical data with a national health survey as a proxy for estimating rural population health. Popul. Health. Metr. 8, 25 (2010).  https://doi.org/10.1186/1478-7954-8-25 CrossRefGoogle Scholar
  10. 10.
    Gardarsdottir, H., Heerdink, R., van Dijk, L., Egberts, A.: Indications for antidepressant drug prescribing in general practice in the Netherlands. J. Affect. Disord. 98(1), 109–115 (2007)CrossRefGoogle Scholar
  11. 11.
    Henriksson, S., Boëthius, G., Hakansson, J., Isacsson, G.: Indications for and outcome of antidepressant medication in a general population: a prescription database and medical record study in Jämtland county, Sweden, 1995. Acta. Psychiatr. Scand. 108(6), 427–431 (2016)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Huber, C.A., Szucs, T.D., Rapold, R., Reich, O.: Identifying patients with chronic conditions using pharmacy data in Switzerland: an updated mapping approach to the classification of medications. BMC Public Health 13, 1030 (2013)CrossRefGoogle Scholar
  14. 14.
    Krumholz, H.M.: Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health. Aff. (Millwood). 33, 1163–1170 (2014).  https://doi.org/10.1377/hlthaff.2014.0053 CrossRefGoogle Scholar
  15. 15.
    Loewenstein, G., Asch, D.A., Friedman, J.Y., Melichar, L.A., Volpp, K.G.: Can behavioural economics make us healthier? (2012)Google Scholar
  16. 16.
    Macdonald, S., Morrison, J., Maxwell, M., Munoz-Arroyo, R., Power, A., Smith, M., Sutton, M., Wilson, P.: “A coal face option”: GPs’ perspectives on the rise in antidepressant prescribing. Br. J. Gen. Pract. 59, e299–e307 (2009)CrossRefGoogle Scholar
  17. 17.
    Maguire, A., Hughes, C., Cardwell, C., O’Reilly, D.: Psychotropic medications and the transition into care: a national data linkage study. J. Am. Geriatr. Soc. 61, 215–221 (2013).  https://doi.org/10.1111/jgs.12101 CrossRefGoogle Scholar
  18. 18.
    Maguire, A., McCann, M., Moritarty, J., O’Reilly, D.: The grief study: using administrative data to understand the mental health impact of bereavement. Eur. J. Public Health. (2014).  https://doi.org/10.1093/eurpub/cku165.058 Google Scholar
  19. 19.
    McClure, J.: The Script Report (2014). http://script-report.thedetail.tv/
  20. 20.
    Meeker, D., Knight, T.K., Friedberg, M.W., Linder, J.A., Goldstein, N.J., Fox, C.R., Rothfeld, A., Diaz, G., Doctor, J.N.: Nudging guideline-concordant antibiotic prescribing: a randomized clinical trial. JAMA Int. Med. 174, 425–431 (2014)CrossRefGoogle Scholar
  21. 21.
    Mental Health Foundation: Mental Health in NI: Fundamental Facts 2016 (2016). http://www.mentalhealth.org.uk/sites/default/files/FF16%20Northern%20ireland.pdf
  22. 22.
    Mercier, A., Auger-Aubin, I., Lebeau, J.-P., Van Royen, P., Peremans, L.: Understanding the prescription of antidepressants: a qualitative study among french GPs. BMC Family Pract. 12, 99 (2011)CrossRefGoogle Scholar
  23. 23.
    Mitchell, A.J.: Adherence behaviour with psychotropic medication is a form of self-medication. Med. Hypotheses 68(1), 12–21 (2016)CrossRefGoogle Scholar
  24. 24.
    Morrison, J., Anderson, M.-J., Sutton, M., Munoz-Arroyo, R., McDonald, S., Maxwell, M., Power, A., Smith, M., Wilson, P.: Factors influencing variation in prescribing of antidepressants by general practices in Scotland. Br. J. Gen. Pract. 59, e25–e31 (2009)CrossRefGoogle Scholar
  25. 25.
    Moore, M., Yuen, H.M., Dunn, N., Mullee, M.A., Maskell, J., Kendrick, T.: Explaining the rise in antidepressant prescribing: a descriptive study using the general practice research database. BMJ 339, b3999 (2009).  https://doi.org/10.1136/bmj.b3999 CrossRefGoogle Scholar
  26. 26.
    NHS England: The Five Year Forward View for Mental Health (2016). http://www.england.nhs.uk/wp-content/uploads/2016/02/Mental-Health-Taskforce-FYFV-final.pdf
  27. 27.
    O’Neill, C., McGregor, P., Merkur, S.: United Kingdom (Northern Ireland). Health System Review. Health. Syst. Transit. 14(10), 1–90 (2012)Google Scholar
  28. 28.
    Pampallona, S., Bollini, P., Tibaldi, G., et al.: Patient adherence in the treatment of depression. Br. J. Psychiatry 180(2), 104–109 (2002)CrossRefGoogle Scholar
  29. 29.
    Rahman, F., Slepian, M.J.: Application of big-data in healthcare analytics #8212; Prospects and challenges. In: 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 13–16 (2016)Google Scholar
  30. 30.
    Schofield, P., Crosland, A., Waheed, W., Aseem, S., Gask, L., Wallace, A., Dickens, A., Tylee, A.: Patients’ views of antidepressants: from first experiences to becoming expert. Br. J. Gen. Pract. 61, e142–e148 (2011)CrossRefGoogle Scholar
  31. 31.
    Velasco, E., Agheneza, T., Denecke, K., Kirchner, G., Eckmanns, T.: Social media and internet-based data in global systems for public health surveillance: a systematic review. Milbank Q. 92, 7–33 (2014).  https://doi.org/10.1111/1468-0009.12038 CrossRefGoogle Scholar
  32. 32.
    Vercambre, M., Gilbert, F.: Respondents in an epidemiologic survey had fewer psychotropic prescriptions than nonrespondents: an insight into health-related selection bias using routine health insurance data. J. Clin. Epidemiol. (2012).  https://doi.org/10.1016/j.jclinepi.2012.05.002 Google Scholar
  33. 33.
    Yang, M., Kiang, M., Shang, W.: Filtering big data from social media – Building an early warning system for adverse drug reactions. J. Biomed. Inform. 54, 230–240 (2015).  https://doi.org/10.1016/j.jbi.2015.01.011 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Brian Cleland
    • 1
  • Jonathan Wallace
    • 1
  • Raymond Bond
    • 1
  • Michaela Black
    • 1
  • Maurice Mulvenna
    • 1
  • Deborah Rankin
    • 1
  • Austin Tanney
    • 2
  1. 1.Ulster UniversityColeraineNorthern Ireland, UK
  2. 2.Analytics EnginesBelfastNorthern Ireland, UK

Personalised recommendations