Skip to main content

Long-Short Term Memory Network for RNA Structure Profiling Super-Resolution

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10687))

Abstract

Profiling of RNAs improves understanding of cellular mechanisms, which can be essential to cure various diseases. It is estimated to take years to fully characterize the three-dimensional structure of around 200,000 RNAs in human using the mutate-and-map strategy. In order to speed up the profiling process, we propose a solution based on super-resolution. We applied five machine learning regression methods to perform RNA structure profiling super-resolution, i.e. to recover the whole data sets using self-similarity in low-resolution (undersampled) data sets. In particular, our novel Interaction Encoded Long-Short Term Memory (IELSTM) network can handle multiple distant interactions in the RNA sequences. When compared with ridge regression, LASSO regression, multilayer perceptron regression, and random forest regression, IELSTM network can reduce the mean squared error and the median absolute error by at least 33% and 31% respectively in three RNA structure profiling data sets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. PyTorch. http://pytorch.org/. Accessed 30 Jan 2017

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  3. Brueckner, R., Schulter, B.: Social signal classification using deep BLSTM recurrent neural networks. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4823–4827. IEEE (2014)

    Google Scholar 

  4. Choudhary, K., Deng, F., Aviran, S.: Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions. Quantit. Biol. 5, 1–22 (2017)

    Article  Google Scholar 

  5. Cordero, P., Lucks, J.B., Das, R.: An RNA mapping database for curating RNA structure mapping experiments. Bioinformatics 28(22), 3006–3008 (2012)

    Article  Google Scholar 

  6. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  7. Dyer, C., Ballesteros, M., Ling, W., Matthews, A., Smith, N.A.: Transition-based dependency parsing with stack long short-term memory. arXiv preprint arXiv:1505.08075 (2015)

  8. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

    Article  Google Scholar 

  9. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 349–356. IEEE (2009)

    Google Scholar 

  10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  11. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks 18(5), 602–610 (2005)

    Article  Google Scholar 

  12. Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S., et al.: GENCODE: the reference human genome annotation for the encode project. Genome Res. 22(9), 1760–1774 (2012)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  15. Hoerl, A.E., Kennard, R.W.: Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1), 55–67 (1970)

    Article  MATH  Google Scholar 

  16. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  18. Kladwang, W., VanLang, C.C., Cordero, P., Das, R.: A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat. Chem. 3(12), 954–962 (2011)

    Article  Google Scholar 

  19. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802 (2016)

  20. Liaw, A., Wiener, M., et al.: Classification and regression by random forest. R News 2(3), 18–22 (2002)

    Google Scholar 

  21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Rosenblatt, F.: Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Spartan Books, Washington (1962)

    MATH  Google Scholar 

  23. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Parallel distributed processing: explorations in the microstructure of cognition. In: Learning Internal Representations by Error Propagation, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  24. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In: Proceedings of the Fifteenth Annual Conference of the International Speech Communication Association (2014)

    Google Scholar 

  25. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075 (2015)

  26. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Roy. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1966)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research is supported by General Research Fund (LU310111 and 414413) from the Research Grant Council of the Hong Kong Special Administrative Region and the Lingnan University Direct Grant (DR16A7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pak-Kan Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wong, PK., Wong, ML., Leung, KS. (2017). Long-Short Term Memory Network for RNA Structure Profiling Super-Resolution. In: Martín-Vide, C., Neruda, R., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2017. Lecture Notes in Computer Science(), vol 10687. Springer, Cham. https://doi.org/10.1007/978-3-319-71069-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71069-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71068-6

  • Online ISBN: 978-3-319-71069-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics