Robust Combinatorial Circuits in Chemical Reaction Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10687)


We introduce a general method for compiling any combinatorial circuit into an input/output chemical reaction network (I/O CRN). An I/O CRN receives a robust input signal over time, processes it catalytically to produce an output signal, and operates under deterministic mass action semantics (mass action kinetics). Our construction is reusable in the sense that it continues to operate correctly under changing input signals, and we prove that the construction is robust with respect to perturbations in (1) input signals; (2) initial concentrations; (3) rate constants; and (4) output measurements.


Nanocomputing Molecular programming Combinatorial circuits Robustness Chemical reaction networks 



We thank Jack Lutz and the Laboratory of Molecular Programming at Iowa State University for useful discussions.


  1. 1.
    Aris, R.: Prolegomena to the rational analysis of systems of chemical reactions. Arch. Ration. Mech. Anal. 19(2), 81–99 (1965)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boemo, M.A., Lucas, A.E., Turberfield, A.J., Cardelli, L.: The formal language and design principles of autonomous DNA walker circuits. ACS Synth. Biol. 5(8), 878–884 (2016)CrossRefGoogle Scholar
  3. 3.
    Boruah, K., Dutta, J.C.: Development of a DNA computing model for Boolean circuit. In: Proceedings of the 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics, pp. 301–304, February 2016Google Scholar
  4. 4.
    Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 23(2), 247–271 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)CrossRefGoogle Scholar
  6. 6.
    Dannenberg, F., Kwiatkowska, M., Thachuk, C., Turberfield, A.J.: DNA walker circuits: computational potential, design, and verification. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 31–45. Springer, Cham (2013). CrossRefGoogle Scholar
  7. 7.
    Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070), 831–834 (2012)CrossRefGoogle Scholar
  8. 8.
    Ellis, S.J., Henderson, E.R., Klinge, T.H., Lathrop, J.I., Lutz, J.H., Lutz, R.R., Mathur, D., Miner, A.S.: Automated requirements analysis for a molecular watchdog timer. In: Proceedings of the 29th International Conference on Automated Software Engineering, pp. 767–778. ACM (2014)Google Scholar
  9. 9.
    Ge, L., Zhong, Z., Wen, D., You, X., Zhang, C.: A formal combinational logic synthesis with chemical reaction networks. IEEE Trans. Mol. Biol. Multi-Scale Commun. 3(1), 33–47 (2017)CrossRefGoogle Scholar
  10. 10.
    Hjelmfelt, A., Weinberger, E.D., Ross, J.: Chemical implementation of neural networks and Turing machines. Proc. Natl. Acad. Sci. 88(24), 10983–10987 (1991)CrossRefzbMATHGoogle Scholar
  11. 11.
    Klinge, T.H.: Robust and modular computation with chemical reaction networks. Ph.D. thesis, Iowa State University (2016)Google Scholar
  12. 12.
    Klinge, T.H.: Robust signal restoration in chemical reaction networks. In: Proceedings of the 3rd International Conference on Nanoscale Computing and Communication, pp. 6:1–6:6. ACM (2016)Google Scholar
  13. 13.
    Klinge, T.H., Lathrop, J.I., Lutz, J.H.: Robust biomolecular finite automata. Technical report 1505.03931, e-Print archive (2015)
  14. 14.
    Klinge, T.H., Lathrop, J.I., Lutz, J.H.: (2016), Work initially introduced in [11] and will appear in a forthcoming extension of [13]Google Scholar
  15. 15.
    Lutz, R.R., Lutz, J.H., Lathrop, J.I., Klinge, T.H., Mathur, D., Stull, D.M., Bergquist, T.G., Henderson, E.R.: Requirements analysis for a product family of DNA nanodevices. In: Proceedings of the 20th International Conference on Requirements Engineering, pp. 211–220. IEEE (2012)Google Scholar
  16. 16.
    Ogihara, M., Ray, A.: Simulating Boolean circuits on a DNA computer. In: Proceedings of the First Annual International Conference on Computational Molecular Biology, RECOMB 1997, pp. 226–231. ACM, New York (1997)Google Scholar
  17. 17.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)CrossRefGoogle Scholar
  18. 18.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)CrossRefGoogle Scholar
  20. 20.
    Song, X., Eshra, A., Dwyer, C., Reif, J.: Renewable DNA seesaw logic circuits enabled by photoregulation of toehold-mediated strand displacement. RSC Adv. 7, 28130–28144 (2017)CrossRefGoogle Scholar
  21. 21.
    Thubagere, A.J., Thachuk, C., Berleant, J., Johnson, R.F., Ardelean, D.A., Cherry, K.M., Qian, L.: Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components. Nat. Commun. 8 (2017). article number 14373Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceIowa State UniversityAmesUSA
  2. 2.Department of Computer ScienceGrinnell CollegeGrinnellUSA

Personalised recommendations