Skip to main content

An Evolutionary Algorithm Based on Graph Theory Metrics for Fuzzy Cognitive Maps Learning

  • Conference paper
  • First Online:
Book cover Theory and Practice of Natural Computing (TPNC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10687))

Included in the following conference series:

Abstract

Fuzzy cognitive map (FCM) is an effective tool for modeling dynamic decision support systems. It describes the analyzed phenomenon in the form of key concepts and causal connections between them. The main aspect of building of the FCM model is concepts selection. It is usually based on the expert knowledge. The aim of this paper is to introduce a new evolutionary algorithm for fuzzy cognitive maps learning. The proposed approach allows to select key concepts based on graph theory metrics and determine the connections between them. A simulation analysis was done with the use of synthetic and real-life data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguilar, J.: Dynamic random fuzzy cognitive maps. Computación y Sistemas 7(4), 260–270 (2004)

    Google Scholar 

  2. Ahmadi, S., Forouzideh, N., Alizadeh, S., Papageorgiou, E.I.: Learning fuzzy cognitive maps using imperialist competitive algorithm. Neural Comput. Appl. 26(6), 1333–1354 (2015)

    Article  Google Scholar 

  3. Borisov, V.V., Kruglov, V.V., Fedulov, A.C.: Fuzzy Models and Networks. Publishing House Telekom, Moscow (2004). (in Russian)

    Google Scholar 

  4. Christoforou, A., Andreou, A.S.: A framework for static and dynamic analysis of multi-layer fuzzy cognitive maps. Neurocomputing 232, 133–145 (2017)

    Article  Google Scholar 

  5. Homenda, W., Jastrzebska, A., Pedrycz, W.: Nodes selection criteria for fuzzy cognitive maps designed to model time series. In: Filev, D., et al. (eds.) Intelligent Systems’2014. AISC, vol. 323, pp. 859–870. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11310-4_75

    Google Scholar 

  6. Jastriebow, A., Poczęta, K.: Analysis of multi-step algorithms for cognitive maps learning. Bullet. Polish Acad. Sci. Tech. Sci. 62(4), 735–741 (2014)

    Google Scholar 

  7. Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24(1), 65–75 (1986)

    Article  MATH  Google Scholar 

  8. Kosko, B.: Fuzzy Engineering. Prentice-Hall, Englewood Cliffs (1997)

    MATH  Google Scholar 

  9. Kubuś, Ł.: Individually directional evolutionary algorithm for solving global optimization problems - comparative study. IJISA 7(9), 12–19 (2015)

    Article  Google Scholar 

  10. Kubuś, Ł., Poczęta, K., Yastrebov, A.: A new learning approach for fuzzy cognitive maps based on system performance indicators. In: 2016 IEEE International Conference on Fuzzy Systems, Vancouver, Canada, pp. 1398–1404 (2016)

    Google Scholar 

  11. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-662-03315-9

    Book  MATH  Google Scholar 

  12. Papageorgiou, E.: A novel approach on constructed dynamic fuzzy cognitive maps using fuzzified decision trees and knowledge-extraction techniques. In: Glykas, M. (ed.) Fuzzy Cognitive Maps: Advances in Theory. Methodologies, Tools and Applications, pp. 43–70. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-03220-2_3

    Chapter  Google Scholar 

  13. Papageorgiou, E.I., Hatwágner, M.F., Buruzs, A., Kóczy, L.T.: A concept reduction approach for fuzzy cognitive map models in decision making and management. Neurocomputing 232, 16–33 (2017)

    Google Scholar 

  14. Papageorgiou, E.I., Poczeta, K.: A two-stage model for time series prediction based on fuzzy cognitive maps and neural networks. Neurocomputing 232, 113–121 (2017)

    Article  Google Scholar 

  15. Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P.: An integrated two-level hierarchical system for decision making in radiation therapy based on fuzzy cognitive maps. IEEE Trans. Biomed. Eng. 50(12), 1326–1339 (2003)

    Article  Google Scholar 

  16. Papakostas, G.A., Boutalis, Y.S., Koulouriotis, D.E., Mertzios, B.G.: Fuzzy cognitive maps for pattern recognition applications. Int. J. Pattern Recognit. Artif. Intell. 22(8), 1461–1468 (2008)

    Article  Google Scholar 

  17. Poczeta, K., Kubuś, Ł., Yastrebov, A.: concepts selection in fuzzy cognitive map using evolutionary learning algorithm based on graph theory metrics. In: FedCSIS 2017 (2017)

    Google Scholar 

  18. Rickard, J.T., Aisbett, J., Yager, R.R.: A new fuzzy cognitive map structure based on the weighted power mean. IEEE Trans. Fuzzy Syst. 23(6), 2188–2201 (2015)

    Article  Google Scholar 

  19. Salmeron, J.L., Froelich, W.: Dynamic optimization of fuzzy cognitive maps for time series forecasting. Knowl. Based Syst. 105, 29–37 (2016)

    Article  Google Scholar 

  20. Selvin, N.N., Srinivasaraghavan, A.: Dimensionality reduction of inputs for a fuzzy cognitive map for obesity problem. In: 2016 International Conference on Inventive Computation Technologies (ICICT) (2016)

    Google Scholar 

  21. Silov, V.B.: Strategic decision-making in a fuzzy environment. INPRO-RES, Moscow (1995). (in Russian)

    Google Scholar 

  22. Stach, W., Kurgan, L., Pedrycz, W., Reformat, M.: Genetic learning of fuzzy cognitive maps. Fuzzy Sets Syst. 153(3), 371–401 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stach, W., Pedrycz, W., Kurgan, L.A.: Learning of fuzzy cognitive maps using density estimate. IEEE Trans. Syst. Man Cybern. Part B 42(3), 900–912 (2012)

    Article  Google Scholar 

  24. Słoń, G.: Application of models of relational fuzzy cognitive maps for prediction of work of complex systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 307–318. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_27

    Chapter  Google Scholar 

  25. Wilson, R.J.: An Introduction to Graph Theory. Pearson Education, Delhi (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Poczeta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Poczeta, K., Kubuś, Ł., Yastrebov, A. (2017). An Evolutionary Algorithm Based on Graph Theory Metrics for Fuzzy Cognitive Maps Learning. In: Martín-Vide, C., Neruda, R., Vega-Rodríguez, M. (eds) Theory and Practice of Natural Computing. TPNC 2017. Lecture Notes in Computer Science(), vol 10687. Springer, Cham. https://doi.org/10.1007/978-3-319-71069-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71069-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71068-6

  • Online ISBN: 978-3-319-71069-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics