Skip to main content

Nanotechnologies for Neurosciences

  • Chapter
  • First Online:
Nonlinear Dynamics in Computational Neuroscience

Part of the book series: PoliTO Springer Series ((PTSS))

  • 1102 Accesses

Abstract

The applications of nanotechnology in the field of neuroscience can be divided into two main strands: (i) applications in the field of basic research and (ii) applications in the clinical field. In the first area we deal with: (a) developing and applying nano-engineered materials to promote adhesion, growth and neuronal differentiation and to understand the neurobiological mechanisms underlying these processes; (b) fabricating nano-systems (for example, “nano-electrodes” implantable) for direct iteration, recording and stimulation of the neurons at the molecular level; (c) applying nano-structures and nanoscale resolution microscopy for advanced and better resolution imaging and diagnostics. In the clinical context, however, the primary goal is to limit or reverse the neurodegenerative processes. In this Lecture Note we present three different approaches at the crossing between basic research and application in clinical field. First, we report on the study of the effect of endogenous dipeptides in neurodegenerative diseases. Then we discuss some recent results in the field of the development of nano-engineered biocompatible materials (“scaffolds”) that might facilitate and accelerate neuronal growth, which represents one of the fundamental objectives of modern tissue engineering. As well, we describe the synthesis of biocompatible micro- and nano-systems that can transport small molecules, drugs, immune system or stem cells, through different routes of administration, a primary goal for the treatment of a wide family of neurological disorders, as well as brain tumors. Finally, we discuss the packaging of stimuli responsive composite systems for cell and cell surrounding environment monitoring, a new road now starting to be strongly pursued.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, S., Wendorff, J.H., Greiner, A.: Use of electrospinning technique for biomedical applications. Polymer 49(26), 5603–5621 (2008)

    Article  Google Scholar 

  2. Ahn, B.Y., Duoss, E.B., Motala, M.J., Guo, X., Park, S.-I., Xiong, Y., Yoon, J., Nuzzo, R.G., Rogers, J.A., Lewis, J.A.: Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323(5921), 1590–1593 (2009)

    Article  Google Scholar 

  3. Aloisi, A., Barca, A., Guerrieri, S., Romano, A., Storelli, C., Rinaldi, R., Verri, T.: Anti-aggregating effect of the naturally occurring dipeptide carnosine on a\(\beta \)1-42 fibril formation. PLoS One 8(7), 68159 (2013)

    Article  Google Scholar 

  4. Aloisi, A., Rizzuti, I., Madaghiele, M., Salvatore, L., Sannino, A., Rinaldi, R.: Data not published elsewhere before published (2015)

    Google Scholar 

  5. Aloisi, A., Toma, C. C., Di Corato, R., Rinaldi, R.: Microfluidics and BIO-encapsulation for drug- and cell-therapy. Proc. SPIE 10364, Organic Sensors and Bioelectronics X, 103640O (2017). https://doi.org/10.1117/12.2274018

  6. Attanasio, F., Convertino, M., Magno, A., Caflisch, A., Corazza, A., Haridas, H., Esposito, G., Cataldo, S., Pignataro, B., Milardi, D., et al.: Carnosine inhibits a\(\beta \)42 aggregation by perturbing the h-bond network in and around the central hydrophobic cluster. ChemBioChem 14(5), 583–592 (2013)

    Article  Google Scholar 

  7. Babizhayev, M., Yegorov, Y.: Advanced drug delivery of n-acetylcarnosine (n-acetyl-beta-alanyl-l-histidine), carcinine (beta-alanylhistamine) and l-carnosine (beta-alanyl-l-histidine) in targeting peptide compounds as pharmacological chaperones for use in tissue engineering, human disease management and therapy: from in vitro to the clinic. Recent Pat. Drug Deliv. Formul. 4(3), 198–230 (2010)

    Article  Google Scholar 

  8. Brännvall, K., Bergman, K., Wallenquist, U., Svahn, S., Bowden, T., Hilborn, J., Forsberg-Nilsson, K.: Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J. Neurosci. Res. 85(10), 2138–2146 (2007)

    Article  Google Scholar 

  9. Brosteaux, D., Axisa, F., Gonzalez, M., Vanfleteren, J.: Design and fabrication of elastic interconnections for stretchable electronic circuits. IEEE Electron Device Lett. 28(7), 552–554 (2007)

    Article  Google Scholar 

  10. Cho, N.G., Woo, H.-S., Lee, J.-H., Kim, I.-D.: Thin-walled nio tubes functionalized with catalytic pt for highly selective c 2 h 5 oh sensors using electrospun fibers as a sacrificial template. Chem. Commun. 47(40), 11300–11302 (2011)

    Article  Google Scholar 

  11. Corona, C., Frazzini, V., Silvestri, E., Lattanzio, R., La Sorda, R., Piantelli, M., Canzoniero, L.M., Ciavardelli, D., Rizzarelli, E., Sensi, S.L.: Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xtg-ad mice. PloS one 6(3), 17971 (2011)

    Article  Google Scholar 

  12. Decher, G.: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997)

    Article  Google Scholar 

  13. del Mercato, L.L., Abbasi, A.Z., Parak, W.J.: Synthesis and characterization of ratiometric ion-sensitive polyelectrolyte capsules. Small 7(3), 351–363 (2011)

    Article  Google Scholar 

  14. del Mercato, L.L., Ferraro, M.M., Baldassarre, F., Mancarella, S., Greco, V., Rinaldi, R., Leporatti, S.: Biological applications of lbl multilayer capsules: from drug delivery to sensing. Adv. Colloid Interface Sci. 207, 139–154 (2014)

    Article  Google Scholar 

  15. del Mercato, L.L., Passione, L.G., Izzo, D., Rinaldi, R., Sannino, A., Gervaso, F.: Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering. J. Mech. Behav. Biomed. Mater. 62, 209–221 (2016)

    Article  Google Scholar 

  16. Ding, B., Wang, M., Yu, J., Sun, G.: Gas sensors based on electrospun nanofibers. Sensors 9(3), 1609–1624 (2009)

    Article  Google Scholar 

  17. Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospun fibers. J. Electrost. 35(2–3), 151–160 (1995)

    Article  Google Scholar 

  18. Egan, P., Schunn, C., Cagan, J., LeDuc, P.: Improving human understanding and design of complex multi-level systems with animation and parametric relationship supports. Des. Sci. 1, (2015)

    Google Scholar 

  19. Eisenberg, D., Jucker, M.: The amyloid state of proteins in human diseases. Cell 148(6), 1188–1203 (2012)

    Article  Google Scholar 

  20. Fan, J.A., Yeo, W.-H., Su, Y., Hattori, Y., Lee, W., Jung, S.-Y., Zhang, Y., Liu, Z., Cheng, H., Falgout, L., et al.: Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014)

    Article  Google Scholar 

  21. Fändrich, M., Schmidt, M., Grigorieff, N.: Recent progress in understanding alzheimer’s \(\beta \)-amyloid structures. Trends Biochem. Sci. 36(6), 338–345 (2011)

    Article  Google Scholar 

  22. Fitzpatrick, A.W., Debelouchina, G.T., Bayro, M.J., Clare, D.K., Caporini, M.A., Bajaj, V.S., Jaroniec, C.P., Wang, L., Ladizhansky, V., Müller, S.A., et al.: Atomic structure and hierarchical assembly of a cross-\(\beta \) amyloid fibril. Proc. Natl. Acad. Sci. 110(14), 5468–5473 (2013)

    Article  Google Scholar 

  23. Ganta, S., Devalapally, H., Shahiwala, A., Amiji, M.: A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Controll. Release 126(3), 187–204 (2008)

    Article  Google Scholar 

  24. Gray, D.S., Tien, J., Chen, C.S.: High-conductivity elastomeric electronics. Adv. Mater. 16(5), 393–397 (2004)

    Article  Google Scholar 

  25. Hamley, I.W.: The amyloid beta peptide: a chemists perspective. role in alzheimers and fibrillization. Chem. Rev. 112(10), 5147–5192 (2012)

    Article  Google Scholar 

  26. Hsieh, F.-Y., Tseng, T.-C., Hsu, S.-h: Self-healing hydrogel for tissue repair in the central nervous system. Neural Regen. Res. 10(12), 1922 (2015)

    Google Scholar 

  27. Huang, C., Soenen, S.J., Rejman, J., Lucas, B., Braeckmans, K., Demeester, J., De Smedt, S.C.: Stimuli-responsive electrospun fibers and their applications. Chem. Soc. Rev. 40(5), 2417–2434 (2011)

    Article  Google Scholar 

  28. Iafisco, M., Sandri, M., Panseri, S., Delgado-Lpez, J.M., Gmez-Morales, J., Tampieri, A.: Magnetic bioactive and biodegradable hollow fe-doped hydroxyapatite coated poly (l-lactic) acid micro-nanospheres. Chem. Mater. 25(13), 2610–2617 (2013)

    Article  Google Scholar 

  29. Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT press, London (2007)

    Google Scholar 

  30. Jeong, J.-W., Shin, G., Park, S.I., Yu, K.J., Xu, L., Rogers, J.A.: Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86(1), 175–186 (2015)

    Article  Google Scholar 

  31. Kim, I.-D., Rothschild, A.: Nanostructured metal oxide gas sensors prepared by electrospinning. Polym. Adv. Technol. 22(3), 318–325 (2011)

    Article  Google Scholar 

  32. Lam, J., Lu, S., Kasper, F.K., Mikos, A.G.: Strategies for controlled delivery of biologics for cartilage repair. Adv. Drug Deliv. Rev. 84, 123–134 (2015)

    Article  Google Scholar 

  33. Lemkul, J.A., Bevan, D.R.: The role of molecular simulations in the development of inhibitors of amyloid \(\beta \)-peptide aggregation for the treatment of alzheimers disease. ACS Chem. Neurosci. 3(11), 845–856 (2012)

    Article  Google Scholar 

  34. Li, G., Zhao, X., Zhao, W., Zhang, L., Wang, C., Jiang, M., Gu, X., Yang, Y.: Porous chitosan scaffolds with surface micropatterning and inner porosity and their effects on schwann cells. Biomaterials 35(30), 8503–8513 (2014)

    Article  Google Scholar 

  35. Li, Y., Rodrigues, J., Tomas, H.: Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41(6), 2193–2221 (2012)

    Article  Google Scholar 

  36. Lührs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Döbeli, H., Schubert, D., Riek, R.: 3d structure of alzheimer’s amyloid-\(\beta \) (1–42) fibrils. Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005)

    Article  Google Scholar 

  37. Mukhatyar, V.J., Salmerón-Sánchez, M., Rudra, S., Mukhopadaya, S., Barker, T.H., García, A.J., Bellamkonda, R.V.: Role of fibronectin in topographical guidance of neurite extension on electrospun fibers. Biomaterials 32(16), 3958–3968 (2011)

    Article  Google Scholar 

  38. Mura, S., Manconi, M., Sinico, C., Valenti, D., Fadda, A.M.: Penetration enhancer-containing vesicles (pevs) as carriers for cutaneous delivery of minoxidil. Int. J. Pharm. 380(1–2), 72–79 (2009)

    Article  Google Scholar 

  39. Pissis, P., Kyritsis, A.: Hydration studies in polymer hydrogels. J. Polym. Sci. Part B: Polym. Phys. 51(3), 159–175 (2013)

    Article  Google Scholar 

  40. Preedy, V.R.: Imidazole Dipeptides: Chemistry, Analysis. Function and Effects. Royal Society of Chemistry, Cambridge (2015)

    Book  Google Scholar 

  41. Ren, Y.-J., Zhang, H., Huang, H., Wang, X.-M., Zhou, Z.-Y., Cui, F.-Z., An, Y.-H.: In vitro behavior of neural stem cells in response to different chemical functional groups. Biomaterials 30(6), 1036–1044 (2009)

    Article  Google Scholar 

  42. Rnjak-Kovacina, J., Wray, L.S., Burke, K.A., Torregrosa, T., Golinski, J.M., Huang, W., Kaplan, D.L.: Lyophilized silk sponges: a versatile biomaterial platform for soft tissue engineering. ACS Biomater. Sci. Eng. 1(4), 260–270 (2015)

    Article  Google Scholar 

  43. Robinson, A.P., Minev, I., Graz, I.M., Lacour, S.P.: Microstructured silicone substrate for printable and stretchable metallic films. Langmuir 27(8), 4279–4284 (2011)

    Article  Google Scholar 

  44. Rosales, A.M., Anseth, K.S.: The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1(2), 15012 (2016)

    Article  Google Scholar 

  45. Sallustio, F., Curci, C., Aloisi, A., Toma, C.C, Marulli, E., Serino, G., Cox, S.N., De Palma, G., Stasi, A., Divella, C., Rinaldi, R., Schena, F.P.: Inhibin-A and Decorin secreted by human adult renal stem/progenitor cells through the TLR2 engagement induce renal tubular cell regeneration. Sci Rep. 7(1), 8225 (2017). https://doi.org/10.1038/s41598-017-08474-0

  46. Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., Someya, T.: A rubberlike stretchable active matrix using elastic conductors. Science 321(5895), 1468–1472 (2008)

    Article  Google Scholar 

  47. Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., Someya, T.: Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8(6), 494–499 (2009)

    Article  Google Scholar 

  48. Sievers, S.A., Karanicolas, J., Chang, H.W., Zhao, A., Jiang, L., Zirafi, O., Stevens, J.T., Münch, J., Baker, D., Eisenberg, D.: Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475(7354), 96 (2011)

    Article  Google Scholar 

  49. Tam, R.Y., Fuehrmann, T., Mitrousis, N., Shoichet, M.S.: Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacology 39(1), 169 (2014)

    Article  Google Scholar 

  50. Van Neerven, S.G., Krings, L., Haastert-Talini, K., Vogt, M., Tolba, R.H., Brook, G., Pallua, N., Bozkurt, A.: Human schwann cells seeded on a novel collagen-based microstructured nerve guide survive, proliferate, and modify neurite outgrowth. BioMed Res. Int. 2014, (2014)

    Google Scholar 

  51. Vlierberghe, S., Dubruel, P., Schacht, E.: Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12(5), 1387–1408 (2011)

    Article  Google Scholar 

  52. Vanfleteren, J., Gonzalez, M., Bossuyt, F., Hsu, Y.-Y., Vervust, T., De Wolf, I., Jablonski, M.: Printed circuit board technology inspired stretchable circuits. MRS Bull. 37(3), 254–260 (2012)

    Article  Google Scholar 

  53. Wang, X., Drew, C., Lee, S.-H., Senecal, K.J., Kumar, J., Samuelson, L.A.: Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2(11), 1273–1275 (2002)

    Article  Google Scholar 

  54. Webber, M.J., Appel, E.A., Meijer, E., Langer, R.: Supramolecular biomaterials. Nat. Mater. 15(1), 13 (2016)

    Article  Google Scholar 

  55. Wu, H., Kong, D., Ruan, Z., Hsu, P.-C., Wang, S., Yu, Z., Carney, T.J., Hu, L., Fan, S., Cui, Y.: A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 8(6), 421 (2013)

    Article  Google Scholar 

  56. Wu, K.H., Mo, X.M., Han, Z.C., Zhou, B.: Stem cell engraftment and survival in the ischemic heart. Ann. Thorac. Surg. 92(5), 1917–1925 (2011)

    Article  Google Scholar 

  57. Yang, Y., Liu, M., Gu, Y., Lin, S., Ding, F., Gu, X.: Effect of chitooligosaccharide on neuronal differentiation of pc-12 cells. Cell Biol. Int. 33(3), 352–356 (2009)

    Article  Google Scholar 

  58. Yoon, J., Chae, S.K., Kim, J.-M.: Colorimetric sensors for volatile organic compounds (vocs) based on conjugated polymer-embedded electrospun fibers. J. Am. Chem. Soc. 129(11), 3038–3039 (2007)

    Article  Google Scholar 

  59. Yuan, Y., Zhang, P., Yang, Y., Wang, X., Gu, X.: The interaction of schwann cells with chitosan membranes and fibers in vitro. Biomaterials 25(18), 4273–4278 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rinaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aloisi, A., Pisignano, D., Rinaldi, R. (2019). Nanotechnologies for Neurosciences. In: Corinto, F., Torcini, A. (eds) Nonlinear Dynamics in Computational Neuroscience. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-71048-8_6

Download citation

Publish with us

Policies and ethics