Abstract
The applications of nanotechnology in the field of neuroscience can be divided into two main strands: (i) applications in the field of basic research and (ii) applications in the clinical field. In the first area we deal with: (a) developing and applying nano-engineered materials to promote adhesion, growth and neuronal differentiation and to understand the neurobiological mechanisms underlying these processes; (b) fabricating nano-systems (for example, “nano-electrodes” implantable) for direct iteration, recording and stimulation of the neurons at the molecular level; (c) applying nano-structures and nanoscale resolution microscopy for advanced and better resolution imaging and diagnostics. In the clinical context, however, the primary goal is to limit or reverse the neurodegenerative processes. In this Lecture Note we present three different approaches at the crossing between basic research and application in clinical field. First, we report on the study of the effect of endogenous dipeptides in neurodegenerative diseases. Then we discuss some recent results in the field of the development of nano-engineered biocompatible materials (“scaffolds”) that might facilitate and accelerate neuronal growth, which represents one of the fundamental objectives of modern tissue engineering. As well, we describe the synthesis of biocompatible micro- and nano-systems that can transport small molecules, drugs, immune system or stem cells, through different routes of administration, a primary goal for the treatment of a wide family of neurological disorders, as well as brain tumors. Finally, we discuss the packaging of stimuli responsive composite systems for cell and cell surrounding environment monitoring, a new road now starting to be strongly pursued.
Keywords
- Endogenous Dipeptide
- Direct Iteration
- Carnosine
- Physical Hedge
- Cell Delivery Vehicle
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options

Adapted from PLoS ONE 8(7): e68159. Aloisi A, Barca A, Romano A, Guerrieri S, Storelli C, Rinaldi R, et al. (2013). doi:10.1371/journal.pone.0068159. With permission from the publisher


Reprinted, after adaptation from [15]. Copyright (2016), with permission from Elsevier


Reprinted from [14]. Copyright (2014), with permission from Elsevier

Credit: Dr. M. Moffa
References
Agarwal, S., Wendorff, J.H., Greiner, A.: Use of electrospinning technique for biomedical applications. Polymer 49(26), 5603–5621 (2008)
Ahn, B.Y., Duoss, E.B., Motala, M.J., Guo, X., Park, S.-I., Xiong, Y., Yoon, J., Nuzzo, R.G., Rogers, J.A., Lewis, J.A.: Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323(5921), 1590–1593 (2009)
Aloisi, A., Barca, A., Guerrieri, S., Romano, A., Storelli, C., Rinaldi, R., Verri, T.: Anti-aggregating effect of the naturally occurring dipeptide carnosine on a\(\beta \)1-42 fibril formation. PLoS One 8(7), 68159 (2013)
Aloisi, A., Rizzuti, I., Madaghiele, M., Salvatore, L., Sannino, A., Rinaldi, R.: Data not published elsewhere before published (2015)
Aloisi, A., Toma, C. C., Di Corato, R., Rinaldi, R.: Microfluidics and BIO-encapsulation for drug- and cell-therapy. Proc. SPIE 10364, Organic Sensors and Bioelectronics X, 103640O (2017). https://doi.org/10.1117/12.2274018
Attanasio, F., Convertino, M., Magno, A., Caflisch, A., Corazza, A., Haridas, H., Esposito, G., Cataldo, S., Pignataro, B., Milardi, D., et al.: Carnosine inhibits a\(\beta \)42 aggregation by perturbing the h-bond network in and around the central hydrophobic cluster. ChemBioChem 14(5), 583–592 (2013)
Babizhayev, M., Yegorov, Y.: Advanced drug delivery of n-acetylcarnosine (n-acetyl-beta-alanyl-l-histidine), carcinine (beta-alanylhistamine) and l-carnosine (beta-alanyl-l-histidine) in targeting peptide compounds as pharmacological chaperones for use in tissue engineering, human disease management and therapy: from in vitro to the clinic. Recent Pat. Drug Deliv. Formul. 4(3), 198–230 (2010)
Brännvall, K., Bergman, K., Wallenquist, U., Svahn, S., Bowden, T., Hilborn, J., Forsberg-Nilsson, K.: Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J. Neurosci. Res. 85(10), 2138–2146 (2007)
Brosteaux, D., Axisa, F., Gonzalez, M., Vanfleteren, J.: Design and fabrication of elastic interconnections for stretchable electronic circuits. IEEE Electron Device Lett. 28(7), 552–554 (2007)
Cho, N.G., Woo, H.-S., Lee, J.-H., Kim, I.-D.: Thin-walled nio tubes functionalized with catalytic pt for highly selective c 2 h 5 oh sensors using electrospun fibers as a sacrificial template. Chem. Commun. 47(40), 11300–11302 (2011)
Corona, C., Frazzini, V., Silvestri, E., Lattanzio, R., La Sorda, R., Piantelli, M., Canzoniero, L.M., Ciavardelli, D., Rizzarelli, E., Sensi, S.L.: Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xtg-ad mice. PloS one 6(3), 17971 (2011)
Decher, G.: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997)
del Mercato, L.L., Abbasi, A.Z., Parak, W.J.: Synthesis and characterization of ratiometric ion-sensitive polyelectrolyte capsules. Small 7(3), 351–363 (2011)
del Mercato, L.L., Ferraro, M.M., Baldassarre, F., Mancarella, S., Greco, V., Rinaldi, R., Leporatti, S.: Biological applications of lbl multilayer capsules: from drug delivery to sensing. Adv. Colloid Interface Sci. 207, 139–154 (2014)
del Mercato, L.L., Passione, L.G., Izzo, D., Rinaldi, R., Sannino, A., Gervaso, F.: Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering. J. Mech. Behav. Biomed. Mater. 62, 209–221 (2016)
Ding, B., Wang, M., Yu, J., Sun, G.: Gas sensors based on electrospun nanofibers. Sensors 9(3), 1609–1624 (2009)
Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospun fibers. J. Electrost. 35(2–3), 151–160 (1995)
Egan, P., Schunn, C., Cagan, J., LeDuc, P.: Improving human understanding and design of complex multi-level systems with animation and parametric relationship supports. Des. Sci. 1, (2015)
Eisenberg, D., Jucker, M.: The amyloid state of proteins in human diseases. Cell 148(6), 1188–1203 (2012)
Fan, J.A., Yeo, W.-H., Su, Y., Hattori, Y., Lee, W., Jung, S.-Y., Zhang, Y., Liu, Z., Cheng, H., Falgout, L., et al.: Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014)
Fändrich, M., Schmidt, M., Grigorieff, N.: Recent progress in understanding alzheimer’s \(\beta \)-amyloid structures. Trends Biochem. Sci. 36(6), 338–345 (2011)
Fitzpatrick, A.W., Debelouchina, G.T., Bayro, M.J., Clare, D.K., Caporini, M.A., Bajaj, V.S., Jaroniec, C.P., Wang, L., Ladizhansky, V., Müller, S.A., et al.: Atomic structure and hierarchical assembly of a cross-\(\beta \) amyloid fibril. Proc. Natl. Acad. Sci. 110(14), 5468–5473 (2013)
Ganta, S., Devalapally, H., Shahiwala, A., Amiji, M.: A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Controll. Release 126(3), 187–204 (2008)
Gray, D.S., Tien, J., Chen, C.S.: High-conductivity elastomeric electronics. Adv. Mater. 16(5), 393–397 (2004)
Hamley, I.W.: The amyloid beta peptide: a chemists perspective. role in alzheimers and fibrillization. Chem. Rev. 112(10), 5147–5192 (2012)
Hsieh, F.-Y., Tseng, T.-C., Hsu, S.-h: Self-healing hydrogel for tissue repair in the central nervous system. Neural Regen. Res. 10(12), 1922 (2015)
Huang, C., Soenen, S.J., Rejman, J., Lucas, B., Braeckmans, K., Demeester, J., De Smedt, S.C.: Stimuli-responsive electrospun fibers and their applications. Chem. Soc. Rev. 40(5), 2417–2434 (2011)
Iafisco, M., Sandri, M., Panseri, S., Delgado-Lpez, J.M., Gmez-Morales, J., Tampieri, A.: Magnetic bioactive and biodegradable hollow fe-doped hydroxyapatite coated poly (l-lactic) acid micro-nanospheres. Chem. Mater. 25(13), 2610–2617 (2013)
Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT press, London (2007)
Jeong, J.-W., Shin, G., Park, S.I., Yu, K.J., Xu, L., Rogers, J.A.: Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86(1), 175–186 (2015)
Kim, I.-D., Rothschild, A.: Nanostructured metal oxide gas sensors prepared by electrospinning. Polym. Adv. Technol. 22(3), 318–325 (2011)
Lam, J., Lu, S., Kasper, F.K., Mikos, A.G.: Strategies for controlled delivery of biologics for cartilage repair. Adv. Drug Deliv. Rev. 84, 123–134 (2015)
Lemkul, J.A., Bevan, D.R.: The role of molecular simulations in the development of inhibitors of amyloid \(\beta \)-peptide aggregation for the treatment of alzheimers disease. ACS Chem. Neurosci. 3(11), 845–856 (2012)
Li, G., Zhao, X., Zhao, W., Zhang, L., Wang, C., Jiang, M., Gu, X., Yang, Y.: Porous chitosan scaffolds with surface micropatterning and inner porosity and their effects on schwann cells. Biomaterials 35(30), 8503–8513 (2014)
Li, Y., Rodrigues, J., Tomas, H.: Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41(6), 2193–2221 (2012)
Lührs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Döbeli, H., Schubert, D., Riek, R.: 3d structure of alzheimer’s amyloid-\(\beta \) (1–42) fibrils. Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005)
Mukhatyar, V.J., Salmerón-Sánchez, M., Rudra, S., Mukhopadaya, S., Barker, T.H., García, A.J., Bellamkonda, R.V.: Role of fibronectin in topographical guidance of neurite extension on electrospun fibers. Biomaterials 32(16), 3958–3968 (2011)
Mura, S., Manconi, M., Sinico, C., Valenti, D., Fadda, A.M.: Penetration enhancer-containing vesicles (pevs) as carriers for cutaneous delivery of minoxidil. Int. J. Pharm. 380(1–2), 72–79 (2009)
Pissis, P., Kyritsis, A.: Hydration studies in polymer hydrogels. J. Polym. Sci. Part B: Polym. Phys. 51(3), 159–175 (2013)
Preedy, V.R.: Imidazole Dipeptides: Chemistry, Analysis. Function and Effects. Royal Society of Chemistry, Cambridge (2015)
Ren, Y.-J., Zhang, H., Huang, H., Wang, X.-M., Zhou, Z.-Y., Cui, F.-Z., An, Y.-H.: In vitro behavior of neural stem cells in response to different chemical functional groups. Biomaterials 30(6), 1036–1044 (2009)
Rnjak-Kovacina, J., Wray, L.S., Burke, K.A., Torregrosa, T., Golinski, J.M., Huang, W., Kaplan, D.L.: Lyophilized silk sponges: a versatile biomaterial platform for soft tissue engineering. ACS Biomater. Sci. Eng. 1(4), 260–270 (2015)
Robinson, A.P., Minev, I., Graz, I.M., Lacour, S.P.: Microstructured silicone substrate for printable and stretchable metallic films. Langmuir 27(8), 4279–4284 (2011)
Rosales, A.M., Anseth, K.S.: The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1(2), 15012 (2016)
Sallustio, F., Curci, C., Aloisi, A., Toma, C.C, Marulli, E., Serino, G., Cox, S.N., De Palma, G., Stasi, A., Divella, C., Rinaldi, R., Schena, F.P.: Inhibin-A and Decorin secreted by human adult renal stem/progenitor cells through the TLR2 engagement induce renal tubular cell regeneration. Sci Rep. 7(1), 8225 (2017). https://doi.org/10.1038/s41598-017-08474-0
Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., Someya, T.: A rubberlike stretchable active matrix using elastic conductors. Science 321(5895), 1468–1472 (2008)
Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., Someya, T.: Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8(6), 494–499 (2009)
Sievers, S.A., Karanicolas, J., Chang, H.W., Zhao, A., Jiang, L., Zirafi, O., Stevens, J.T., Münch, J., Baker, D., Eisenberg, D.: Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475(7354), 96 (2011)
Tam, R.Y., Fuehrmann, T., Mitrousis, N., Shoichet, M.S.: Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacology 39(1), 169 (2014)
Van Neerven, S.G., Krings, L., Haastert-Talini, K., Vogt, M., Tolba, R.H., Brook, G., Pallua, N., Bozkurt, A.: Human schwann cells seeded on a novel collagen-based microstructured nerve guide survive, proliferate, and modify neurite outgrowth. BioMed Res. Int. 2014, (2014)
Vlierberghe, S., Dubruel, P., Schacht, E.: Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12(5), 1387–1408 (2011)
Vanfleteren, J., Gonzalez, M., Bossuyt, F., Hsu, Y.-Y., Vervust, T., De Wolf, I., Jablonski, M.: Printed circuit board technology inspired stretchable circuits. MRS Bull. 37(3), 254–260 (2012)
Wang, X., Drew, C., Lee, S.-H., Senecal, K.J., Kumar, J., Samuelson, L.A.: Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2(11), 1273–1275 (2002)
Webber, M.J., Appel, E.A., Meijer, E., Langer, R.: Supramolecular biomaterials. Nat. Mater. 15(1), 13 (2016)
Wu, H., Kong, D., Ruan, Z., Hsu, P.-C., Wang, S., Yu, Z., Carney, T.J., Hu, L., Fan, S., Cui, Y.: A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 8(6), 421 (2013)
Wu, K.H., Mo, X.M., Han, Z.C., Zhou, B.: Stem cell engraftment and survival in the ischemic heart. Ann. Thorac. Surg. 92(5), 1917–1925 (2011)
Yang, Y., Liu, M., Gu, Y., Lin, S., Ding, F., Gu, X.: Effect of chitooligosaccharide on neuronal differentiation of pc-12 cells. Cell Biol. Int. 33(3), 352–356 (2009)
Yoon, J., Chae, S.K., Kim, J.-M.: Colorimetric sensors for volatile organic compounds (vocs) based on conjugated polymer-embedded electrospun fibers. J. Am. Chem. Soc. 129(11), 3038–3039 (2007)
Yuan, Y., Zhang, P., Yang, Y., Wang, X., Gu, X.: The interaction of schwann cells with chitosan membranes and fibers in vitro. Biomaterials 25(18), 4273–4278 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer International Publishing AG, part of Springer Nature
About this chapter
Cite this chapter
Aloisi, A., Pisignano, D., Rinaldi, R. (2019). Nanotechnologies for Neurosciences. In: Corinto, F., Torcini, A. (eds) Nonlinear Dynamics in Computational Neuroscience. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-71048-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-71048-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71047-1
Online ISBN: 978-3-319-71048-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)