Nanotechnologies for Neurosciences

  • A. Aloisi
  • D. Pisignano
  • R. RinaldiEmail author
Part of the PoliTO Springer Series book series (PTSS)


The applications of nanotechnology in the field of neuroscience can be divided into two main strands: (i) applications in the field of basic research and (ii) applications in the clinical field. In the first area we deal with: (a) developing and applying nano-engineered materials to promote adhesion, growth and neuronal differentiation and to understand the neurobiological mechanisms underlying these processes; (b) fabricating nano-systems (for example, “nano-electrodes” implantable) for direct iteration, recording and stimulation of the neurons at the molecular level; (c) applying nano-structures and nanoscale resolution microscopy for advanced and better resolution imaging and diagnostics. In the clinical context, however, the primary goal is to limit or reverse the neurodegenerative processes. In this Lecture Note we present three different approaches at the crossing between basic research and application in clinical field. First, we report on the study of the effect of endogenous dipeptides in neurodegenerative diseases. Then we discuss some recent results in the field of the development of nano-engineered biocompatible materials (“scaffolds”) that might facilitate and accelerate neuronal growth, which represents one of the fundamental objectives of modern tissue engineering. As well, we describe the synthesis of biocompatible micro- and nano-systems that can transport small molecules, drugs, immune system or stem cells, through different routes of administration, a primary goal for the treatment of a wide family of neurological disorders, as well as brain tumors. Finally, we discuss the packaging of stimuli responsive composite systems for cell and cell surrounding environment monitoring, a new road now starting to be strongly pursued.


  1. 1.
    Agarwal, S., Wendorff, J.H., Greiner, A.: Use of electrospinning technique for biomedical applications. Polymer 49(26), 5603–5621 (2008)CrossRefGoogle Scholar
  2. 2.
    Ahn, B.Y., Duoss, E.B., Motala, M.J., Guo, X., Park, S.-I., Xiong, Y., Yoon, J., Nuzzo, R.G., Rogers, J.A., Lewis, J.A.: Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323(5921), 1590–1593 (2009)CrossRefGoogle Scholar
  3. 3.
    Aloisi, A., Barca, A., Guerrieri, S., Romano, A., Storelli, C., Rinaldi, R., Verri, T.: Anti-aggregating effect of the naturally occurring dipeptide carnosine on a\(\beta \)1-42 fibril formation. PLoS One 8(7), 68159 (2013)CrossRefGoogle Scholar
  4. 4.
    Aloisi, A., Rizzuti, I., Madaghiele, M., Salvatore, L., Sannino, A., Rinaldi, R.: Data not published elsewhere before published (2015)Google Scholar
  5. 5.
    Aloisi, A., Toma, C. C., Di Corato, R., Rinaldi, R.: Microfluidics and BIO-encapsulation for drug- and cell-therapy. Proc. SPIE 10364, Organic Sensors and Bioelectronics X, 103640O (2017).
  6. 6.
    Attanasio, F., Convertino, M., Magno, A., Caflisch, A., Corazza, A., Haridas, H., Esposito, G., Cataldo, S., Pignataro, B., Milardi, D., et al.: Carnosine inhibits a\(\beta \)42 aggregation by perturbing the h-bond network in and around the central hydrophobic cluster. ChemBioChem 14(5), 583–592 (2013)CrossRefGoogle Scholar
  7. 7.
    Babizhayev, M., Yegorov, Y.: Advanced drug delivery of n-acetylcarnosine (n-acetyl-beta-alanyl-l-histidine), carcinine (beta-alanylhistamine) and l-carnosine (beta-alanyl-l-histidine) in targeting peptide compounds as pharmacological chaperones for use in tissue engineering, human disease management and therapy: from in vitro to the clinic. Recent Pat. Drug Deliv. Formul. 4(3), 198–230 (2010)CrossRefGoogle Scholar
  8. 8.
    Brännvall, K., Bergman, K., Wallenquist, U., Svahn, S., Bowden, T., Hilborn, J., Forsberg-Nilsson, K.: Enhanced neuronal differentiation in a three-dimensional collagen-hyaluronan matrix. J. Neurosci. Res. 85(10), 2138–2146 (2007)CrossRefGoogle Scholar
  9. 9.
    Brosteaux, D., Axisa, F., Gonzalez, M., Vanfleteren, J.: Design and fabrication of elastic interconnections for stretchable electronic circuits. IEEE Electron Device Lett. 28(7), 552–554 (2007)CrossRefGoogle Scholar
  10. 10.
    Cho, N.G., Woo, H.-S., Lee, J.-H., Kim, I.-D.: Thin-walled nio tubes functionalized with catalytic pt for highly selective c 2 h 5 oh sensors using electrospun fibers as a sacrificial template. Chem. Commun. 47(40), 11300–11302 (2011)CrossRefGoogle Scholar
  11. 11.
    Corona, C., Frazzini, V., Silvestri, E., Lattanzio, R., La Sorda, R., Piantelli, M., Canzoniero, L.M., Ciavardelli, D., Rizzarelli, E., Sensi, S.L.: Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xtg-ad mice. PloS one 6(3), 17971 (2011)CrossRefGoogle Scholar
  12. 12.
    Decher, G.: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330), 1232–1237 (1997)CrossRefGoogle Scholar
  13. 13.
    del Mercato, L.L., Abbasi, A.Z., Parak, W.J.: Synthesis and characterization of ratiometric ion-sensitive polyelectrolyte capsules. Small 7(3), 351–363 (2011)CrossRefGoogle Scholar
  14. 14.
    del Mercato, L.L., Ferraro, M.M., Baldassarre, F., Mancarella, S., Greco, V., Rinaldi, R., Leporatti, S.: Biological applications of lbl multilayer capsules: from drug delivery to sensing. Adv. Colloid Interface Sci. 207, 139–154 (2014)CrossRefGoogle Scholar
  15. 15.
    del Mercato, L.L., Passione, L.G., Izzo, D., Rinaldi, R., Sannino, A., Gervaso, F.: Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering. J. Mech. Behav. Biomed. Mater. 62, 209–221 (2016)CrossRefGoogle Scholar
  16. 16.
    Ding, B., Wang, M., Yu, J., Sun, G.: Gas sensors based on electrospun nanofibers. Sensors 9(3), 1609–1624 (2009)CrossRefGoogle Scholar
  17. 17.
    Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospun fibers. J. Electrost. 35(2–3), 151–160 (1995)CrossRefGoogle Scholar
  18. 18.
    Egan, P., Schunn, C., Cagan, J., LeDuc, P.: Improving human understanding and design of complex multi-level systems with animation and parametric relationship supports. Des. Sci. 1, (2015)Google Scholar
  19. 19.
    Eisenberg, D., Jucker, M.: The amyloid state of proteins in human diseases. Cell 148(6), 1188–1203 (2012)CrossRefGoogle Scholar
  20. 20.
    Fan, J.A., Yeo, W.-H., Su, Y., Hattori, Y., Lee, W., Jung, S.-Y., Zhang, Y., Liu, Z., Cheng, H., Falgout, L., et al.: Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014)CrossRefGoogle Scholar
  21. 21.
    Fändrich, M., Schmidt, M., Grigorieff, N.: Recent progress in understanding alzheimer’s \(\beta \)-amyloid structures. Trends Biochem. Sci. 36(6), 338–345 (2011)CrossRefGoogle Scholar
  22. 22.
    Fitzpatrick, A.W., Debelouchina, G.T., Bayro, M.J., Clare, D.K., Caporini, M.A., Bajaj, V.S., Jaroniec, C.P., Wang, L., Ladizhansky, V., Müller, S.A., et al.: Atomic structure and hierarchical assembly of a cross-\(\beta \) amyloid fibril. Proc. Natl. Acad. Sci. 110(14), 5468–5473 (2013)CrossRefGoogle Scholar
  23. 23.
    Ganta, S., Devalapally, H., Shahiwala, A., Amiji, M.: A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Controll. Release 126(3), 187–204 (2008)CrossRefGoogle Scholar
  24. 24.
    Gray, D.S., Tien, J., Chen, C.S.: High-conductivity elastomeric electronics. Adv. Mater. 16(5), 393–397 (2004)CrossRefGoogle Scholar
  25. 25.
    Hamley, I.W.: The amyloid beta peptide: a chemists perspective. role in alzheimers and fibrillization. Chem. Rev. 112(10), 5147–5192 (2012)CrossRefGoogle Scholar
  26. 26.
    Hsieh, F.-Y., Tseng, T.-C., Hsu, S.-h: Self-healing hydrogel for tissue repair in the central nervous system. Neural Regen. Res. 10(12), 1922 (2015)Google Scholar
  27. 27.
    Huang, C., Soenen, S.J., Rejman, J., Lucas, B., Braeckmans, K., Demeester, J., De Smedt, S.C.: Stimuli-responsive electrospun fibers and their applications. Chem. Soc. Rev. 40(5), 2417–2434 (2011)CrossRefGoogle Scholar
  28. 28.
    Iafisco, M., Sandri, M., Panseri, S., Delgado-Lpez, J.M., Gmez-Morales, J., Tampieri, A.: Magnetic bioactive and biodegradable hollow fe-doped hydroxyapatite coated poly (l-lactic) acid micro-nanospheres. Chem. Mater. 25(13), 2610–2617 (2013)CrossRefGoogle Scholar
  29. 29.
    Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT press, London (2007)Google Scholar
  30. 30.
    Jeong, J.-W., Shin, G., Park, S.I., Yu, K.J., Xu, L., Rogers, J.A.: Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86(1), 175–186 (2015)CrossRefGoogle Scholar
  31. 31.
    Kim, I.-D., Rothschild, A.: Nanostructured metal oxide gas sensors prepared by electrospinning. Polym. Adv. Technol. 22(3), 318–325 (2011)CrossRefGoogle Scholar
  32. 32.
    Lam, J., Lu, S., Kasper, F.K., Mikos, A.G.: Strategies for controlled delivery of biologics for cartilage repair. Adv. Drug Deliv. Rev. 84, 123–134 (2015)CrossRefGoogle Scholar
  33. 33.
    Lemkul, J.A., Bevan, D.R.: The role of molecular simulations in the development of inhibitors of amyloid \(\beta \)-peptide aggregation for the treatment of alzheimers disease. ACS Chem. Neurosci. 3(11), 845–856 (2012)CrossRefGoogle Scholar
  34. 34.
    Li, G., Zhao, X., Zhao, W., Zhang, L., Wang, C., Jiang, M., Gu, X., Yang, Y.: Porous chitosan scaffolds with surface micropatterning and inner porosity and their effects on schwann cells. Biomaterials 35(30), 8503–8513 (2014)CrossRefGoogle Scholar
  35. 35.
    Li, Y., Rodrigues, J., Tomas, H.: Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41(6), 2193–2221 (2012)CrossRefGoogle Scholar
  36. 36.
    Lührs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Döbeli, H., Schubert, D., Riek, R.: 3d structure of alzheimer’s amyloid-\(\beta \) (1–42) fibrils. Proc. Natl. Acad. Sci. U. S. A. 102(48), 17342–17347 (2005)CrossRefGoogle Scholar
  37. 37.
    Mukhatyar, V.J., Salmerón-Sánchez, M., Rudra, S., Mukhopadaya, S., Barker, T.H., García, A.J., Bellamkonda, R.V.: Role of fibronectin in topographical guidance of neurite extension on electrospun fibers. Biomaterials 32(16), 3958–3968 (2011)CrossRefGoogle Scholar
  38. 38.
    Mura, S., Manconi, M., Sinico, C., Valenti, D., Fadda, A.M.: Penetration enhancer-containing vesicles (pevs) as carriers for cutaneous delivery of minoxidil. Int. J. Pharm. 380(1–2), 72–79 (2009)CrossRefGoogle Scholar
  39. 39.
    Pissis, P., Kyritsis, A.: Hydration studies in polymer hydrogels. J. Polym. Sci. Part B: Polym. Phys. 51(3), 159–175 (2013)CrossRefGoogle Scholar
  40. 40.
    Preedy, V.R.: Imidazole Dipeptides: Chemistry, Analysis. Function and Effects. Royal Society of Chemistry, Cambridge (2015)CrossRefGoogle Scholar
  41. 41.
    Ren, Y.-J., Zhang, H., Huang, H., Wang, X.-M., Zhou, Z.-Y., Cui, F.-Z., An, Y.-H.: In vitro behavior of neural stem cells in response to different chemical functional groups. Biomaterials 30(6), 1036–1044 (2009)CrossRefGoogle Scholar
  42. 42.
    Rnjak-Kovacina, J., Wray, L.S., Burke, K.A., Torregrosa, T., Golinski, J.M., Huang, W., Kaplan, D.L.: Lyophilized silk sponges: a versatile biomaterial platform for soft tissue engineering. ACS Biomater. Sci. Eng. 1(4), 260–270 (2015)CrossRefGoogle Scholar
  43. 43.
    Robinson, A.P., Minev, I., Graz, I.M., Lacour, S.P.: Microstructured silicone substrate for printable and stretchable metallic films. Langmuir 27(8), 4279–4284 (2011)CrossRefGoogle Scholar
  44. 44.
    Rosales, A.M., Anseth, K.S.: The design of reversible hydrogels to capture extracellular matrix dynamics. Nat. Rev. Mater. 1(2), 15012 (2016)CrossRefGoogle Scholar
  45. 45.
    Sallustio, F., Curci, C., Aloisi, A., Toma, C.C, Marulli, E., Serino, G., Cox, S.N., De Palma, G., Stasi, A., Divella, C., Rinaldi, R., Schena, F.P.: Inhibin-A and Decorin secreted by human adult renal stem/progenitor cells through the TLR2 engagement induce renal tubular cell regeneration. Sci Rep. 7(1), 8225 (2017).
  46. 46.
    Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., Someya, T.: A rubberlike stretchable active matrix using elastic conductors. Science 321(5895), 1468–1472 (2008)CrossRefGoogle Scholar
  47. 47.
    Sekitani, T., Nakajima, H., Maeda, H., Fukushima, T., Aida, T., Hata, K., Someya, T.: Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8(6), 494–499 (2009)CrossRefGoogle Scholar
  48. 48.
    Sievers, S.A., Karanicolas, J., Chang, H.W., Zhao, A., Jiang, L., Zirafi, O., Stevens, J.T., Münch, J., Baker, D., Eisenberg, D.: Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature 475(7354), 96 (2011)CrossRefGoogle Scholar
  49. 49.
    Tam, R.Y., Fuehrmann, T., Mitrousis, N., Shoichet, M.S.: Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacology 39(1), 169 (2014)CrossRefGoogle Scholar
  50. 50.
    Van Neerven, S.G., Krings, L., Haastert-Talini, K., Vogt, M., Tolba, R.H., Brook, G., Pallua, N., Bozkurt, A.: Human schwann cells seeded on a novel collagen-based microstructured nerve guide survive, proliferate, and modify neurite outgrowth. BioMed Res. Int. 2014, (2014)Google Scholar
  51. 51.
    Vlierberghe, S., Dubruel, P., Schacht, E.: Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12(5), 1387–1408 (2011)CrossRefGoogle Scholar
  52. 52.
    Vanfleteren, J., Gonzalez, M., Bossuyt, F., Hsu, Y.-Y., Vervust, T., De Wolf, I., Jablonski, M.: Printed circuit board technology inspired stretchable circuits. MRS Bull. 37(3), 254–260 (2012)CrossRefGoogle Scholar
  53. 53.
    Wang, X., Drew, C., Lee, S.-H., Senecal, K.J., Kumar, J., Samuelson, L.A.: Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2(11), 1273–1275 (2002)CrossRefGoogle Scholar
  54. 54.
    Webber, M.J., Appel, E.A., Meijer, E., Langer, R.: Supramolecular biomaterials. Nat. Mater. 15(1), 13 (2016)CrossRefGoogle Scholar
  55. 55.
    Wu, H., Kong, D., Ruan, Z., Hsu, P.-C., Wang, S., Yu, Z., Carney, T.J., Hu, L., Fan, S., Cui, Y.: A transparent electrode based on a metal nanotrough network. Nat. Nanotechnol. 8(6), 421 (2013)CrossRefGoogle Scholar
  56. 56.
    Wu, K.H., Mo, X.M., Han, Z.C., Zhou, B.: Stem cell engraftment and survival in the ischemic heart. Ann. Thorac. Surg. 92(5), 1917–1925 (2011)CrossRefGoogle Scholar
  57. 57.
    Yang, Y., Liu, M., Gu, Y., Lin, S., Ding, F., Gu, X.: Effect of chitooligosaccharide on neuronal differentiation of pc-12 cells. Cell Biol. Int. 33(3), 352–356 (2009)CrossRefGoogle Scholar
  58. 58.
    Yoon, J., Chae, S.K., Kim, J.-M.: Colorimetric sensors for volatile organic compounds (vocs) based on conjugated polymer-embedded electrospun fibers. J. Am. Chem. Soc. 129(11), 3038–3039 (2007)CrossRefGoogle Scholar
  59. 59.
    Yuan, Y., Zhang, P., Yang, Y., Wang, X., Gu, X.: The interaction of schwann cells with chitosan membranes and fibers in vitro. Biomaterials 25(18), 4273–4278 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Microelectronics and MicrosystemsCNRLecceItaly
  2. 2.NEST, Institute of NanoscienceCNRPisaItaly
  3. 3.Department of PhysicsUniversity of PisaPisaItaly
  4. 4.ISUFIUniversity of SalentoLecceItaly
  5. 5.Department of Mathematics and Physics “E De Giorgi”University of SalentoLecceItaly

Personalised recommendations