Skip to main content

Next Generation Neural Mass Models

  • Chapter
  • First Online:
Nonlinear Dynamics in Computational Neuroscience

Part of the book series: PoliTO Springer Series ((PTSS))

Abstract

Neural mass models have been actively used since the 1970s to model the coarse grained activity of large populations of neurons and synapses. They have proven especially useful in understanding brain rhythms. However, although motivated by neurobiological considerations they are phenomenological in nature, and cannot hope to recreate some of the rich repertoire of responses seen in real neuronal tissue. In this chapter we consider the \(\theta \)-neuron model that has recently been shown to admit to an exact mean-field description for instantaneous pulsatile interactions. We show that the inclusion of a more realistic synapse model leads to a mean-field model that has many of the features of a neural mass model coupled to a further dynamical equation that describes the evolution of network synchrony. A bifurcation analysis is used to uncover the primary mechanism for generating oscillations at the single and two population level. Numerical simulations also show that the phenomena of event related synchronisation and desynchronisation are easily realised. Importantly unlike its phenomenological counterpart this next generation neural mass model is an exact macroscopic description of an underlying microscopic spiking neurodynamics, and is a natural candidate for use in future large scale human brain simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Article  Google Scholar 

  2. Zetterberg, L.H., Kristiansson, L., Mossberg, K.: Performance of a model for a local neuron population. Biol. Cybern. 31, 15–26 (1978)

    Article  Google Scholar 

  3. Lopes da Silva, F.H., Hoeks, A., Smits, H., Zetterberg, L.H.: Model of brain rhythmic activity: the alpha-rhythm of the thalamus. Kybernetik 15, 27–37 (1974)

    Article  Google Scholar 

  4. Lopes da Silva, F.H., van Rotterdam, A., Barts, P., van Heusden, E., Burr, W.: Models of neuronal populations: the basic mechanisms of rhythmicity. Prog. Brain Res. 45, 281–308 (1976)

    Article  Google Scholar 

  5. Jansen, B.H., Rit, V.G.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cyber. 73, 357–366 (1995)

    Article  Google Scholar 

  6. Wendling, F., Benquet, P., Bartolomei, F., Jirsa, V.: Computational models of epileptiform activity. J. Neurosci. Methods 260, 233–251 (2016)

    Article  Google Scholar 

  7. Dafilis, M.P., Frascoli, F., Cadusch, P.J., Liley, D.T.J.: Chaos and generalised multistability in a mesoscopic model of the electroencephalogram. Phys. D 238, 1056–1060 (2009)

    Article  Google Scholar 

  8. Freeman, W.J.: Tutorial on neurobiology: from single neurons to brain chaos. Int. J. Bifurc. Chaos 2, 451–482 (1992)

    Article  Google Scholar 

  9. Sotero, R.C., Trujillo-Barreto, N.J., Iturria-Medina, Y., Carbonell, F., Jimenez, J.C.: Realistically coupled neural mass models can generate EEG rhythms. Neural Comput. 19, 478–512 (2007)

    Article  MathSciNet  Google Scholar 

  10. Spiegler, A., Knösche, T.R., Schwab, K., Haueisen, J., Atay, F.M.: Modeling brain resonance phenomena using a neural mass model. PLoS Comput. Biol. 7(12), e1002298 (2011)

    Article  Google Scholar 

  11. Deco, G., Jirsa, V.K., McIntosh, A.R.: Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Rev. Neurosci. 12, 43–56 (2011)

    Article  Google Scholar 

  12. Valdes-Sosa, P., Sanchez-Bornot, J.M., Sotero, R.C., Iturria-Medina, Y., Aleman-Gomez, Y., Bosch-Bayard, J., Carbonell, F., Ozaki, T.: Model driven EEG/fMRI fusion of brain oscillations. Hum. Brain Mapp. 30, 2701–2721 (2009)

    Article  Google Scholar 

  13. Moran, R., Pinotsis, D.A., Friston, K.: Neural masses and fields in dynamic causal modeling. Front. Comput. Neurosci. 7(57), 1–12 (2013)

    Google Scholar 

  14. Sanz-Leon, P., Knock, S.A., Spiegler, A., Jirsa, V.K.: Mathematical framework for large-scale brain network modeling in the virtual brain. NeuroImage 111, 385–430 (2015)

    Article  Google Scholar 

  15. Bhattacharya, B.S., Chowdhury, F.N (eds.): Validating Neuro-Computational Models of Neurological and Psychiatric Disorders. Springer, Berlin (2015)

    Google Scholar 

  16. Pfurtscheller, G., Lopes da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophys. 110, 1842–1857 (1999)

    Article  Google Scholar 

  17. Ashwin, P., Coombes, S., Nicks, R.: Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6(2), (2016)

    Google Scholar 

  18. Luke, T.B., Barreto, E., So, P.: Complete classification of the macroscopic behaviour of a heterogeneous network of theta neurons. Neural Comput. 25, 3207–3234 (2013)

    Article  MathSciNet  Google Scholar 

  19. Montbrió, E., Pazó, D., Roxin, A.: Macroscopic description for networks of spiking neurons. Phys. Rev. X 5, 021028 (2015)

    Google Scholar 

  20. Spiegler, A., Kiebel, S.J., Atay, F.M., Knösche, T.R.: Bifurcation analysis of neural mass models: impact of extrinsic inputs and dendritic time constants. NeuroImage 52, 1041–1058 (2010)

    Article  Google Scholar 

  21. Touboul, J., Wendling, F., Chauvel, P., Faugeras, O.: Neural mass activity, bifurcations, and epilepsy. Neural Comput. 23, 3232–3286 (2011)

    Article  MathSciNet  Google Scholar 

  22. Ermentrout, G.B., Kopell, N.: Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46, 233–253 (1986)

    Article  MathSciNet  Google Scholar 

  23. Latham, P.E., Richmond, B.J., Nelson, P.G., Nirenberg, S.: Intrinsic dynamics in neuronal networks I theory. J. Neurophysiol. 83, 808–827 (2000)

    Article  Google Scholar 

  24. Pazó, D., Montbrió, E.: Low-dimensional dynamics of populations of pulse-coupled oscillators. Phys. Rev. X 4, 011009 (2014)

    Google Scholar 

  25. Kuramoto, Y.: Collective synchronization of pulse-coupled oscillators and excitable units. Phys. D 50, 15–30 (1991)

    Article  Google Scholar 

  26. Ott, E., Antonsen, T.M.: Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008)

    Article  MathSciNet  Google Scholar 

  27. Laing, C.R : Phase oscillator network models of brain dynamics. In: Computational Models of Brain and Behavior. Wiley-Blackwell (2016)

    Google Scholar 

  28. Ermentrout, G.B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM Books, Philadelphia (2002)

    Book  Google Scholar 

  29. Börgers, C., Kopell, N.: Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput. 15, 509–538 (2003)

    Article  Google Scholar 

  30. Byrne, Á., Brookes, M.J., Coombes, S.: A mean field model for movement induced changes in the \(\beta \) rhythm. J. Comput. Neurosci. 43, 143–158 (2017)

    Google Scholar 

  31. Bojak, I., Breakspear, M.: Neuroimaging, neural population models for. In: Encyclopedia of Computational Neuroscience, pp. 1–29. Springer, Berlin (2014)

    Google Scholar 

  32. Baladron, J., Fasoli, D., Faugeras, O., Touboul, J.: Mean field description of and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons. J. Math. Neurosci. 2(10), (2012)

    Article  MathSciNet  Google Scholar 

  33. Coombes, S., beim Graben, P., Potthast, R., Wright, J.J. (eds). Neural Field Theory. Springer, Berlin (2014)

    Google Scholar 

  34. Laing, C.R.: Exact neural fields incorporating gap junctions. SIAM J. Appl. Dyn. Syst. 14, 1899–1929 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

SC was supported by the European Commission through the FP7 Marie Curie Initial Training Network 289146, NETT: Neural Engineering Transformative Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Coombes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coombes, S., Byrne, Á. (2019). Next Generation Neural Mass Models. In: Corinto, F., Torcini, A. (eds) Nonlinear Dynamics in Computational Neuroscience. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-71048-8_1

Download citation

Publish with us

Policies and ethics